Thermal and Physicochemical Characterization of Fibers from Coffee Hulls as Filler for Linear Low Density Polyethylene (LLDPE)

Tom, Ahmat and Tame, Abel and Djonga, Paul Nestor Djomou and Justin, Bakary Tigana Djonse and Abena, Eugenie Géraldine Nga (2021) Thermal and Physicochemical Characterization of Fibers from Coffee Hulls as Filler for Linear Low Density Polyethylene (LLDPE). Advances in Materials Physics and Chemistry, 11 (10). pp. 155-166. ISSN 2162-531X

[thumbnail of ampc_2021101915350999.pdf] Text
ampc_2021101915350999.pdf - Published Version

Download (1MB)

Abstract

This work presents the thermal, physical and chemical characterization of Coffee canephora, from littoral region of Cameroon, for their use as reinforcement for polymeric materials. The infrared of coffee hulls shows the presence of a large peak intensity at 3299 cm-1 that can be attributed to O-H stretching group of alcohol (cellulose content in coffee pulp). The intensity 2926 cm-1 can be attributed to C-H stretching group of alkanes or the vibration of methoxy group of lignin. Thermo gravimetric analysis shows that around 440°C, the biomass has been completely consumed; the temperature profiles show a peak at 86°C that could correspond to the loss of water as evaporation at a percentage of 8%; the peak at 321°C is accompanied by a water loss of 64.50%; this temperature is assimilated to the degradation of hemicelluloses; the temperature range from 321°C to 401°C is accompanied by a loss of mass of 22.80%, which would be due to the degradation of cellulose. SEM images of the surface of raw coffee hulls, coffee hulls treated with caustic soda respectively clearly reveal gaps between the fibers. The results showed that the incorporation of coffee hulls fiber in LLDPE matrix might result in composites with suitable property application for various industrial fields; especially those that were mechanical features are crucial, such as the replacement of engineering plastics.

Item Type: Article
Subjects: Middle Asian Archive > Chemical Science
Depositing User: Managing Editor
Date Deposited: 10 Apr 2023 08:43
Last Modified: 15 Jun 2024 12:29
URI: http://library.eprintglobalarchived.com/id/eprint/64

Actions (login required)

View Item
View Item