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ABSTRACT
Deep learning methods for univariate time series classification
(TSC) are recently gaining attention. Especially, convolutional
neural network (CNN) is utilized to solve the problem of pre-
dicting class labels of time series obtained through various
important applications, such as engineering, biomedical, and
finance. In this work, a novel CNN model is proposed with
validation-based stopping rule (VSR) named as CNN-VSR, for
univariate TSC using 2-D convolution operation, inspired by
image processing properties. For this, first, we develop a novel
2-D transformation approach to convert 1-D time series of any
length to 2-D matrix automatically without any manual pre-
processing. The transformed time series will be given as an
input to the proposed architecture. Further, the implicit and
explicit regularization is applied, as time series signal is highly
chaotic and prone to over-fitting with learning. Specifically, we
define a VSR, which provides a set of parameters associated
with a low validation set loss. Moreover, we also conduct
a comparative empirical performance evaluation of the pro-
posed CNN-VSR with the best available methods for individual
benchmark datasets whose information are provided in
a repository maintained by UCR and UEA. Our results reveal
that proposed CNN-VSR advances the baseline methods by
achieving higher performance accuracy. In addition, we
demonstrate that the stopping rule considerably contributes
to the classifying performance of the proposed CNN-VSR archi-
tecture. Furthermore, we also discuss the optimal model selec-
tion and study the effects of different factors on the
performance of the proposed CNN-VSR.

Introduction

Time series data can be obtained from everywhere in everyday life. It is
constantly generated from various human activities and different real world
applications, such as biomedical signals, weather recordings, stock exchange
rates, and many more. The time series analysis tasks mainly involve trend fitting,
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forecasting, clustering, and classification. In particular, in this article, we focus on
the classification of time series. The time series classification (TSC) (Xing, Pei,
and Keogh 2010) have many potential applications in the areas like healthcare
(Wiens, Horvitz, and Guttag 2012), finance (Delgado, Cuellar, and Pegalajar
2008), engineering (Chen et al. 2014) and entertainment (Esling and Agon
2013). As univariate time series is the simplest type of time series data, this
provides a reasonably good beginning point to analyze such temporal signals.
A univariate TSC problem can be defined as, tsn ! clc so that n number of time
series of length l : tsn ¼ ts1l ; ts2l ; :::; tsnlð Þ can be associated with c number of
class labels clc 2 fcl1; cl2; � � � ; clcg. An application example of univariate TSC is
to identify different heartbeats in electrocardiography data for monitoring the
heart activities (Acharya et al. 2017). Moreover, it is also used in identifying
household appliance working at a particular time frame (Lines et al. 2011).

The TSC problem has been explored and different types of TSC methods
have been proposed in the past few decades due to its wide applicability and
increase in time series datasets in various real world domains. The existing
methods for TSC can be grouped from different perceptions. On the basis of
feature types, it can be categorized as time domain or frequency domain
methods. Time domain includes autoregression, cross-correlation, and auto-
correlation analysis, while latter one includes wavelet and spectral analysis. It
can also be categorized on the basis of strategy used for classification as
distance-based methods, feature-based methods and model-based methods.
The distance-based methods serve as earliest baseline, which work with raw
time series. These methods measured similarity between any two given time
series with some pre-defined similarity metrics such as dynamic time warp-
ing (DTW) (Li 2015) or Euclidean distance. Based on these similarity mea-
sures, the classification can be performed by applying algorithms such as
k-nearest neighbors (k-NN). The combination of k-NN and DTW is a very
efficient classifier, and it is known as a golden standard for TSC in last
decade (Kate 2016) (Rakthanmanon et al. 2013; Jeong, Jeong, and Omitaomu
2011). For feature-based methods, a set of features are extracted for given
time series that help in representation of patterns in data. Usually, after
quantization, these patterns are represented in the form of bag of words,
then fed to the classifiers (Lin et al. 2007). To name some recent benchmarks,
bag of features framework (TSBF) (Baydogan, Runger, and Tuv 2013), bag of
symbolic Fourier approximation symbols (BOSS) (Schäfer 2015) and BOSS
with vector space model (BOSSVS) (Schäfer 2016) are used to extract fea-
tures. The final classification is done using 1-NN classifier. Moreover, the
model-based methods assume that a particular class sequence generated by
an underlying model and parameters of the model are determined and fitted
by the training set in the class. The simplest proposed model is Naive Bayes
sequence classifier (Lewis 1998). However, the assumption of independence
among features of different classes often violates for real life problems. The
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hidden Markov model is able to model the dependency between features of
different classes and recently applied to TSC (Antonucci et al. 2015). Further,
some ensemble approaches have been proposed for TSC, which combine
multiple classifiers together to achieve better accuracy. From all ensemble
approaches, to the best authors’ knowledge, the flat collective transform-
based ensemble (COTE) provides better accuracy for time series datasets. It is
a combination of 35 classifiers, which extract features from both frequency
and time domain.

All the above-discussed methods require heavy crafting for pre-processing
of data and extraction of features from time series signals. There are also
some complexities associated with all of the methods. For distance-based
methods, the length of given two time series must be equal and it is also
sensitive to volatile nature of real time series data. Although, DTW has
always been popular for time series data mining tasks but is computationally
expensive and unable to satisfy the triangle inequality. For all the feature-
based methods, the performance of classifier highly depends on the designing
of features. It is to note that the application of the model-based approaches
are limited by the fact that generally the time series obtained from real
applications cannot, or very tough to be represented by a generative model.

In recent years, learning through deep neural network has achieved great
recognition in fields like speech recognition and computer vision.
Convolutional neural network (CNN) becomes one of the most popular
among all deep learning architectures. Unlike the conventional feature-
based classification methods, CNN does not need hand-crafted features.
Both feature extraction and classification parts are unified in one model
and are learned jointly. Moreover, CNN produced very impressive results
in the field of image and signal processing for face identification, object
recognition and masking (Schmidhuber 2015; Bengio, Courville, and
Vincent 2013; Längkvist, Karlsson, and Loutfi 2014; Bengio 2013). Further,
CNN has also been explored to few non-computer vision domains (Sak,
Senior, and Beaufays 2014; Sezer and Ozbayoglu 2018; Ijjina and Mohan
2016; Costa, Oliveira, and Silla 2017). The main reason behind the success of
CNN is its capability to learn complex features automatically using its multi-
ple layers. Furthermore, there have been some research efforts in the area of
TSC to exploit the abilities of deep learning, especially CNN. In Zheng et al.
(2016), the authors proposed a multi channel CNN for multivariate TSC.
A sliding window method is applied to enhance the time series data, and the
results are presented with only two multivariate datasets and no experiments
are performed on benchmark datasets. In Cui, Chen, and Chen (2016),
a multi scale CNN approach is proposed for univariate TSC. The authors
manually pre-process data for multi-scale settings using skip sampling, down
sampling, and sliding window operation. However, due to large set of hyper-
parameters and heavy preprocessing, it is difficult to deploy method
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presented in Cui, Chen, and Chen (2016). In Wang, Yan, and Oates (2017),
the authors proposed three frameworks namely multi-layer perceptron
(MLP), residual network and fully convolutional network. Their deep archi-
tectures perform well on small datasets but still prone to over-fitting. Both
Cui, Chen, and Chen (2016) and Wang, Yan, and Oates (2017) provided
comparative results on University of California Riverside (UCR) benchmark
datasets (Chen et al. 2016). Further, the authors in Zhao et al. (2017) have
proposed a shallow network architecture, however, the methods require
hyper-parameters fine tuning, which can be tedious tasks in application to
different datasets. Moreover, deep networks may be prone to over-fitting and
unwanted chaotic behavior and therefore require additional computational
cost. There is also a possibility that a shallow network may not be capable to
uncover the dynamic behavior of the data.

Motivated by the CNN for image processing applications, we explore deep
learning for TSC problem. In this study, we propose a novel CNN model
with validation-based stopping rule (VSR) named as CNN-VSR for univari-
ate TSC using two dimensional(2-D) convolution operation. For this, first we
develop a novel approach that can transform any one dimensional (1-D) time
series signals to 2-D matrices without any manual preprocessing. In order to
transform the any time series signal of length l, we find out the optimum
number of row r and columns c using simple factorization method. This
method can be easily generalized to any time series data obtained from
different real world problems. To the best of our knowledge, this simple
2-D transformation method is novel approach to convert the 1-D signal to
2-D matrices automatically without any manual pre-processing. The trans-
formed time series will be given as an input to the proposed architecture.
Thereafter, we propose a novel CNN architecture with VSR (CNN-VSR) for
univariate TSC problem. Here, we introduce the stopping rule to avoid over-
fitting, which is simple to apply with any CNN architecture (Prechelt 2012).
Moreover, convolution and pooling operations are applied alternatively to
extract deep features of the transformed time series data. Thereafter, the
extracted features are fed to an MLP as an input to perform classification. In
contrast to Cui, Chen, and Chen (2016), Wang, Yan, and Oates (2017) and
Zhao et al. (2017), where the performance has been compared with limited
number of straw-man methods, in this article, we compare the performance
of proposed CNN-VSR architecture with the best available state of art
method for individual datasets whose information are provided in the com-
prehensive repository for TSC maintained by UCR and University of East
Anglia (UEA). Our results reveal that the proposed CNN-VSR architecture
actually performs remarkably well.

Moreover, subtle fine tuning is needed with CNN architectures to boost
the performance of classifier (Uktveris and Jusas 2017; Gurcan et al. 2002).
This involves selecting an optimal model of CNN, which includes selection of
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a architecture and parameter settings. Therefore, these nuances and their
effect on performance of classification are well investigated and discussed in
this article. Further, it is important to note that, we did not require extensive
hyper-parameter tuning as the objective function has been optimized using
adaptive gradient descent. This gradient method have per-parameter learning
rate, which applies heuristic approach without the need of heavy manual
work in tuning hyper-parameters for learning rate schedule.

The structure of the rest of article is organized as follows. Section 2 presents
the details of CNN-VSR approach. In Section 3, the experimental setup to
evaluate the performance of proposed approach is presented. Section 4 pro-
vides the empirical analysis and demonstrates effectiveness of CNN-VSR
approach in detail. Finally, the conclusion is presented in Section 5.

The Methodology

In this section, we present a novel CNN architecture to classify the univariate
time series data. For this as inspired by image processing properties, we
develop a novel 2-D transformation approach to convert 1-D time series of
any length to 2-D matrix automatically. The transformed time series will be
given as an input to the proposed architecture. Thereafter, we present a novel
CNN-VSR architecture. Further, the early stopping rule for the proposed
architecture is discussed. Moreover, for fine-tuning of the proposed archi-
tecture, we also discuss the optimal architecture and parameter settings.

Transformation of Time Series

Success of traditional CNN for image classification is well known. To utilize
the capability of traditional CNN, we transform the 1-D time series signals
into 2-D matrices. Therefore, a linear transformation of 1-D (univariate)
time series to 2-D matrix is defined (see Figure 1 at the next page). Before
transforming a time series, each time series is normalized using centering and
whitening process. This is required to compare time series with different
amplitudes and offsets (Keogh and Kasetty 2003). Therefore, a time series of
length l can be converted into 2-D matrix of row r and column c such that it
satisfies the condition l ¼ r � c. Let l is assumed as the product of prime
numbers P, then the set of prime numbers is divided into two subsets S1 and
S2, such that the difference of the sum of members of subsets is minimized.
Hence, r and c are the product of the members of subsets S1 and S2,
respectively. The term l; P; r, and c are mathematically defined as

l ¼
Yn
i¼1

Pi; (1)
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P ¼ S1
\

S2 : minimized
X

S1
� �

�
X

S2
� ���� ���; (2)

r ¼
Ym
i¼1

S1i; c ¼
Yn
i¼1

S2i: (3)

Algorithm 1 Transformation of training set

1: Let l be the length of time series of a training set and ts is the time
series

2: procedure TRANSFORM(l; ts)

3: p = 2, k = 1, i = 0

4: while l � p2 do

5: if l mod p ¼¼ 0 then

6: store p into an array pri[]

7: l ¼ l=p

8: else p ¼ pþ 1

9: end if

10: end while

11: n ¼ sizeof pri½�
12: Call procedureDIMðpri; n� 1; 0; 0; 1; 1Þ
13: for each time series ts in training set do

14: for i ¼ 1 to row do

15: for j ¼ 1 to col do

16: trans½i�½j� ¼ ts½k�

Figure 1. Transformation of training set.
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17: k ¼ k þ 1

18: end for

19: end for

20: end for

21: end procedure

22: procedure DIM ðpri½�; n; s1; s2; r; cÞ
23: if n< 0 then

24: return s1� s2j j
25: end if

26: m ¼ DIMðpri; n� 1; s1þ pri½n�; s2; r � pri½n�; cÞ
27: n ¼ DIMðpri; n� 1; s1; s2þ pri½n�; r; c� pri½n�Þ
28: if s1� s2 ¼¼ minðm; nÞ then
29: row ¼ r and col ¼ c

30: returnrowand col

31: end if

32: end procedure

The transformed training set (see Figure 1) will be given as an input to the
proposed architecture, which is proposed in the next section. Overall, the
transformation of training set is summarized in the Algorithm 1.

The Proposed Architecture

This Section presents the architecture of the proposed CNN model. It consists
of multiple layers, which deal with feature extraction and classification of time
series datasets. There are two convolutional layers, two max-pooling layers,
two dropout layers, one flatten layer, and three fully connected layers (see
Figure 2). The specific architecture has been finalized by testing multiple
architectures (see Section 2.3.1). Every feature learning layers depict different
feature-level, number of filters, activation function, and pooling operators.
Each layer receives and produces feature maps as input and output respec-
tively. Moreover, with the help of Eq. (2), the layers are convolved with kernel
size of (3,3). The convolutional layer is the heart of any CNN model and
reinforces a local connectivity pattern by utilizing spatially local correlation
between neurons of adjoining layers. After each convolutional layer, feature
maps are connected to max-pooling layer. The main reason for applying max-
pooling function is to reduce the size of feature maps. Further, the parameters
for neurons are obtained through brute force method and the filter size and
stride of convolutional layer is set to 3 and 1, respectively. Furthermore, the
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Rectified Linear Unit (ReLU) and sigmoid activation function are used in our
proposed model. The ReLU activation function is used in convolutional layers
to capture interactions and non-linearities in time series data, whereas the
sigmoid activation function is used in fully-connected layers to classify the
features extracted from previous layers. The sigmoid activation function
allows model to learn the complex structures. Finally, at the end of first
stage, feature extracted are flattened and sent as an input to fully connected
layers to classify the given time series. Fully-connected layers are similar to the
traditional MLP as each neuron of one layer is connected to each neuron in
another layer. The proposed pipeline of layers of CNN architecture for TSC is
shown in Figure 2. The brief description of each layer used in proposed
architecture is described below.

Convolution
Convolution is a mathematical construct, which is widely applicable in
processing of digital signals. These signals are mostly represented in the
form of time series. In layman’s terms, convolution can be defined as
a method for combining or blending two functions of time in an adhesive
form (Weisstein 1999). The 2-D convolution function with two input
matrices having dimensions Iðra; caÞ and Kðrb; cbÞ can be mathematically
described as

Cði; jÞ ¼
Xra
m¼0

Xca
n¼0

Iðm; nÞKði�m; j� nÞ; (4)

where 0 � i< raþ rb� 1 and 0 � j< caþ cb� 1.

Figure 2. Architecture of proposed CNN model.
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Pooling
Pooling operation perform nonlinear down-sampling of the input. This
operation divides the input signal into many non-overlapping rectangular
regions. For each such region, it produces output as average or maximum
value. This helps in reducing the feature size as requisite, and it also
provides translation invariance. Moreover, a max-pooling operation com-
putes the maximum value as an output, therefore, mathematically it can be
written as

zij ¼ max zi0;j0 : i � i0 < iþ p; j � j0 < jþ p
� �

; (5)

where z is the output and p is the padding.

Dropout
The idea of dropout in neural network is to dropout the units of both visible
and hidden layers randomly. It can be viewed as a regularization approach to
avoid over-fitting in the training phase. This operation diminishes complex
co-adaptations among neurons. Therefore, it is helpful in learning more
robust features. For implementation, a mask is created of zeros and ones
during forward pass in training to deactivate neurons.

Flattening
The final stage of any CNN is a classifier. It is also referred as a dense layer,
which is an artificial neural network classifier. The classifier requires a vector
of individual features as an input. Therefore, it is needed to transform the
output of feature extraction into 1-D feature vector. This mechanism is
known as flattening.

Non-linear Gating
Non-linear filters of traditional CNN uses non-linear gating function with
a linear functions, which is applied identically to every constituent of
a feature map. The most used non-linear gating function is the ReLU
function. Such filter can be mathematically expressed as

zik ¼ max 0; xikf g: (6)

where x is the input and z is the output.

Adaptive Stochastic Gradient Descent
Adaptive optimization is an extension to stochastic gradient descent algo-
rithm. Unlike stochastic gradient, it maintains the learning rate for every
network per-parameter and adapted distinguishably as learning continues
from first and second moment computations. It is well suited for convex and
non-convex problems for quick convergence (Kingma and Jimmy 2014).
Mathematically, its update rule can be represented as
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θtþ1 ¼ θt � ηffiffiffiffibvtp
þ ε

cmt; (7)

where η is the learning rate, mt is the first moment and vt is the second
moment of the gradients.

Optimal Model Selection

Architecture Selection
Choosing the best architecture provides greater probability of achieving better
results in different neural network applications (Balkin and Keith Ord 2000).
CNN supports sequentially connected layers. Due to different types of layers, it
is not trivial to get an optimal sequence that closely suits to the given problem.
Therefore, in this article, we model the layer selection process as a Markov
Decision Process with the assumption that a well-performing layer in one
network should also perform well in another network. We make this assump-
tion based on the hierarchical nature of the feature representations learned by
neural networks with many different layers (LeCun, Bengio, and Hinton 2015).
Mostly, four layers are popular among researchers, which deal with TSC
namely; convolutional layer, pooling layer, fully-connected layer (Dense layer),
and ReLU layer. In addition, we have added dropout layer to suppress the over-
fitting in the data. The multiple combinations of these layers are trained for
chosen learning problem using benchmark datasets. In this article, we have
tested six different CNN architectures. The configuration of architectures in
a simplified notation is presented in Table 1. We selected the best-suited
architecture on the basis of testing accuracy and processing time of algorithm.
Therefore, architecture five (see Table 1 at the next page) is selected for our
learning problem due to its better testing accuracy in comparison to other
architectures (see Figure 3 at the next page), and it is also competitive with
other architectures in terms of processing time (see Figure 4 at the next page).

Parameters Selection
Although deep learning has achieved promising results on many tasks,
training and fine-tuning of a good model normally require significant efforts.
This is because, several important parameters needed to be evaluated, such as

Table 1. Notation for different architectures.
# Architectures Notations

Arch 1 ICMDoFDDDO I = Input layer of size
Arch 2 ICMRDoFDO C = Convolutional Layer
Arch 3 ICMCMODoFDDO F = Flatten Layer
Arch 4 ICMDoCRFDDDO Do = Dropout Layer, O = Output Layer
Arch 5 ICMDoCMDoFDDDO D = Dense Layer, R = ReLU Layer
Arch 6 ICMCRDCMDoFDDO M = Max-Pooling Layer
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learning rate, dropout ratio, and the number of training iterations. For
instance, a small learning rate may demand much more iterations to con-
verge, while a large value may accelerate the convergence but can possibly
result in oscillation. In addition, a larger dropout ratio may lead to a better
model but could probably slow down the convergence. There is no universal
rule for parameter selection. With the goal of providing some insights on
parameter selection especially for the problem of TSC, we study different sets
of parameters using the aforementioned network architecture using bench-
mark datasets. The final sets of parameters are shown in Figure 2. These
parameters have been finalized by reducing the cross-validation error of
proposed CNN architecture (Anders and Korn 1999).
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Learning

Learning of proposed CNN architecture is analogous to the training of any
MLP. Each neuron in the MLP contains an activation function, which maps
the weighted inputs to the output. An MLP is said to have a deep architecture
when it contains more than one hidden layer. Similarly, a CNN referred as
MLP with special architecture. Generally, CNN is composed of two steps. In
first step, deep features of raw data are generated using convolution and
pooling functions alternatively, whereas in Step 2, an MLP classifies the deep
features generated in previous step. Moreover, there are two important
aspects for designing any CNN, which are appropriate architecture and
best learning algorithm. The learning algorithm and architecture should be
compatible with each other and fit to the data appropriately.

Algorithm 2 Learning with VSR

1: let θ be the initial set of parameters and θ
0
be the best parameters.

2: Let n be the number of folds, e is the number of epochs and q is the
patience.

3: procedure VSR(n; e; α; q)

4: j ¼ 0; i ¼ 0; Llw ¼ 1
5: for 1 to n folds do

6: while j< e do

7: update θ by running the training algorithm

8: update LlwðeÞ; Lva eð Þ using Eqs. (9) and (10)

9: if Lgen jð Þ> α then using Eq. (11)

10: θ
0 ¼ θ save the best parameters

11: j ¼ j þ 1

12: else

13: while i � q do

14: if Lgen jð Þ> α then using Eq. (11)

15: θ
0 ¼ θ save the best parameters

16: else

17: if i ¼¼ q then

18: Break ðstop the learning processÞ
19: else i ¼ iþ 1

20: end if

21: end if

22: end while
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23: end if

24: end while

25: end for

26: use the best parameters θ
0
to compute the testing accuracy

27: end procedure

Backpropagation training process is applied for estimation of the para-
meters of the model (LeCun et al. 1998) (LeCun et al. 2012). Each back-
propagation training phase has four main sections, named as: forward pass,
loss function, backward pass, and weight update. The goal of this phase is to
train a model that provides accurate class predictions for new unlabeled
time series data. To fulfil this purpose, we have used a training set X ¼
fðts1l ; cl1Þ; ðts2l ; cl2Þ; � � � ; ðtsnl ; clnÞg of labeled time series of finite length l. In
forward pass, we fed the transformed data (see Section III(A))
X ¼ fððts1r � ts1cÞ; cl1Þ; ððts2r � ts2cÞ; cl2Þ; � � � ; ððtsnr � tsncÞ; clnÞg as an input
to pass it through the whole network architecture. Further, during forward
pass, the feature maps are determined on input matrix by passing it from
one layer to another layer until it reaches the output (from left to right in
Figure 2). Moreover, the 22 feature maps obtained from convolutional layer
has been presented for one benchmark dataset in the Figure 5. After that,
the propagation error is estimated using loss function for the produced
output (error propagates from right to left in Figure 2). Further, we have
utilized cross-entropy as loss function (objective function) to compute error
between targets and predictions. It can be described as

Lts ¼ �
X

tts;cl log pts;cl
� 	

; (8)

where t is the target, p is the prediction, ts represents the time series and cl
denotes the class label. Computed error on every layer is utilized for gradient
(derivative) calculations to find out the direction to change parameters for
convolutional and fully-connected layers, and accordingly the weights can be
updated. Moreover, the non-linear gating function (see Section 2.2.5) can be
adopted into the derivative by limiting the contributions from convolution

Figure 5. Visualization of 21 convolutional kernels of size 3� 3 learned by first convolution layer
on the Synthetic Control benchmark time series data of input matrix of 10� 6.
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kernels that have been turned off by the ReLU function. In this article, we
have applied the adaptive stochastic gradient descent for optimization of the
proposed model. The proposed network architecture is learned iteratively by
backpropagation over a number of epochs, where one epoch can be defined
as the interval during which each time series from the training set has been
used once. In each epoch the training set is divided into mini-batches for
batch-wise optimization. The learning rate for the batch-wise optimization is
controlled by per-parameter adaptively using the Adam method based on the
variance of the gradient. Parameters of Adam are chosen as recommended in
(Kingma and Jimmy 2014). The mean loss over all time series samples during
validation is calculated in evaluation phase after each epoch. The selected
model used for the evaluation is the one, which achieves the lowest validation
loss. To fulfil this objective, we required early stopping (Prechelt 2012) of
learning and therefore, a VSR is described in next section.

Validation-Based Early Stopping Rule (VSR)

Although, when to stop learning has been always important question in
training a supervised classifier, as it may lead to under-fitting or over-
fitting of data. However, all traditional neural networks prone to over-
fitting such as MLP (Geman, Bienenstock, and Doursat 1992). Generally,
validation is applied to understand when over-fitting starts in supervised
training set. Previously, plot of error in training and validation over time is
utilized to find the optimum number of epochs (see Figure 6a at the next
page), but this approach can not be generalized to Figure 6b,c, because the
curves shown in these figures have more than one local or global mini-
mum. Hence, it is impossible to determine from these curves that when to
stop learning. Therefore, there is a requirement of better validation-based
early stopping rule, which can be used to avoid over-fitting of data.

Before describing stopping rule, some definitions are needed. Let L be
the objective function (loss function) used in the training algorithm, then
Ltr eð Þ, the training set loss, is the average loss per example over the training

Figure 6. Training and validation loss curves.
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set, measured after epoch e. Further, Lva eð Þ is defined as validation loss,
which is the corresponding loss on the validation set, and it is used in
stopping rule. Lts eð Þ, the test loss is the corresponding loss on the test set.
Lts eð Þ is unknown during training process but it is assumed to use in
estimation of generalization loss. In real life, the generalization loss is
usually unknown, so that only the validation error can be used to estimate
it. The Llw eð Þ is defined as lowest validation set loss and can be obtained in
epochs upto e as

LlwðeÞ ¼ min
e0�e

Lvaðe0 Þ: (9)

Generalization loss is the relative increase of validation set loss obtained in
epoch upto e over the minimum value so far. It can be defined as

Lgen eð Þ ¼ 100
Lva eð Þ
Llw eð Þ � 1


 �
: (10)

Moreover, the training will be stopped as soon as the Lgen eð Þ stops showing
any improvement. In other words, when the Lgen eð Þ falls below the certain
threshold α the training will be stopped. Mathematically, it can be writ-
ten as

VSR : Lgen eð Þ< α: (11)

High generalization loss has been always a obvious reason for early stopping
the learning process but there might be possibility of improving the general-
ization loss over time, thus, a waiting period of epochs is introduced named
as patience q. The patience q can be defined as the number of epochs without
improvement in Lgen eð Þ, after which training process will be stopped. This
stopping rule helps in deciding the stopping instant at some time period t
during training, as a result we get the set of weights that exhibited the lowest
validation error Llw eð Þ. In summary, Algorithm 2 shows the required steps
for implementing the learning with the VSR.

Experimental Setup

In this section, we discuss the analysis of experiments carried out to inves-
tigate the capabilities of CNN classifier for different time series signals.

Datasets

The experiments are carried out on univariate time series signals from
multiple real-life domains. Twenty datasets are selected from UCR repository
for TSC and clustering. These datasets have been already splitted by UCR
into default training and testing sets. Moreover, these time series datasets
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consist of binary class or multi-class classification, long or short length time
series signals, bio-metric data classification, image shape outline classifica-
tion, sensor reading, and many more. These features inspire us to select
different datasets. The information about considered datasets is presented in
Table 2.

Implementation Details

All experiments are implemented with Python using TensorFlow, Keras,
Numpy, and Sklearn APIs. These are carried out on a workstation with 3.4
GHz processor and 32 GB RAM memory. CNN architecture was implemen-
ted sequentially using Keras layers. For training, a 2-D matrix r � c of
univariate signal is provided as an input. All the parameters for proposed
architecture are described in parameter settings of the previous section.

Evaluation Method

To evaluate the efficiency of the proposed CNN-VSR architecture, we have
evaluated the accuracy of the classification results obtained through the
experiments. The accuracy score is calculated as

Accuracy ¼ 1
Xtest

X
xεXtest

I argmaxi¼1;:::;k px;i
� � ¼ clx

� 	
: (12)

Using Eq. (12), the results of proposed CNN-VSR architecture are compared
with the best available algorithm for particular dataset provided by TSC

Table 2. Summary of selected UCR datasets.
Dataset Train Size Test Size Length No. of Classes Type

Beef 30 30 470 5 Spectro
CBF 30 900 128 3 Simulated
CinCECGtorso 40 1380 1639 4 ECG
Coffee 28 28 286 2 Spectro
DiatomSizeR 16 306 345 4 Image
ECG 100 100 96 2 ECG
Face All 560 1690 131 14 Image
Face Four 24 88 350 4 Image
FacesUCR 200 2050 131 14 Image
GunPoint 50 150 150 2 Motion
ItalyPower 67 1029 24 2 Sensor
Lighting2 60 61 637 2 Sensor
Lighting7 70 73 319 7 Sensor
StarLightCurves 1000 8236 1024 3 Sensor
SyntheticControl 70 300 60 6 Simulated
Trace 100 100 275 4 Sensor
Two patterns 1000 4000 128 4 Simulated
UWaveX 896 3582 315 8 Motion
UWaveY 896 3582 315 8 Motion
Wafer 1000 6164 152 2 Sensor
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repository. All the experiment results are measured and computed using
normalized accuracy in range of ½0 : 1�. Further, the parameters of CNN
architecture were verified and tuned before producing classification output.
Final outputs of classification can be referred in result and discussion section.

Results and Discussions

For comparative examination, the proposed architecture is tested on selected
20 datasets (see Table 2). Every dataset in repository has separate files for
training and testing tasks. Moreover, in this study, the training file is further
divided for validation. The 10-fold cross validation is used to generate the
validation and training set data.

Effect of VSR on Accuracy

Based on the formulation of VSR, the training is stopped when the
minimum error achieved for validation set, thus we expect to achieve
the better accuracy for proposed CNN with VSR. To validate this, we plot
the best-achieved accuracy on 20 UCR benchmark datasets with VSR and
without VSR for the proposed architecture. It can be observed from
Figure 7 that the accuracy produced by proposed architecture with VSR
is marginally better than the proposed architecture without VSR for each
selected dataset.

In Figure 8a,b, we present the confusion matrices yielded by the
proposed CNN architecture with VSR and without VSR, respectively on
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Figure 7. Comparison of accuracies with VSR and without VSR.
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Beef dataset. By comparing these confusion matrices in Figure 8a,b, it can
be seen that there is bigger occurrence of confusion in Figure 8b. Further
it is also evident from these figures that the class-wise classification
accuracy for the proposed architecture with VSR is significantly better
than the accuracy achieved without VSR. Furthermore, the similar obser-
vation can also be made for the other datasets.

Requirement of Early Stopping

In this section, we discuss the requirement of other regularization method,
named as: early stopping to avoid over-fitting. To demonstrate this, we have
conducted empirical experiments and shown that the dropout regularization
method is only helpful for few datasets such as CinCECGtorso (see Figure 9a).
However from the Figure 9b,c, it is clear that this method is unable to tackle all
the complexities in the data obtained through different applications such as
ECG and GunPoint data, because these datasets are still prone to over-fitting.
Moreover from the Figure 9b,c, it can be seen that the training accuracy is
almost 100% and testing accuracy is lesser than training accuracy for ECG and

Figure 8. Confusion matrices of proposed CNN model on Beef dataset.

Figure 9. Training and testing accuracy curves.

118 A. GAUTAM AND V. SINGH



GunPoint datasets. Therefore, we still require some other regularization
method to tackle over-fitting in a variety of datasets; hence, the early stopping
is required.

Effect of Modifying α

The α defined in VSR is critical in deciding when to stop the learning
process. Based on the definition of α, large value may lead to too early
stopping of learning process, which provides low generalization, and small
value may increase the training time of learning process. Due to increase
of high computing systems, higher generalization of the results is con-
sidered in finding out the optimal value of α, which is required to reduce
overfitting and underfitting in data. In order to analyze the effects of
modifying α in learning process on the test accuracy of datasets, different
values of α are used in VSR. The mean value (averaged over all datasets)
of the testing set accuracy for different α has been plotted in Figure 10. As
it is clearly inferred from the plot, for better generalization of trained
results with unknown test set the lower values are achieving better gen-
eralization from training to testing process. Specifically, as shown in
Figure 10, at α ¼ 0:001 and α ¼ 0:01, the best results are obtained for
the tested datasets. Thus, these value of α should be taken into account.
Moreover, it is worth to note that the selection of the most optimal value
of α may depend upon other criteria as well. This optimal value of α
heavily relies on the datasets and also on the problem addressed by the
user for particular area in terms of accuracy and generalization.
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Figure 10. Evolution of accuracy according to α.
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Effect of Modifying Patience q

The parameter q denotes the number of epochs without improvement in
validation loss, after which learning will not be continued. As such, with the
aim of analyzing to what extent the results are affected by this parameter, we
have carried out some experiments using different q values based on pro-
posed CNN-VSR architecture at α ¼ 0:001.

Figure 11 reveals that there are no large difference between the obtained
accuracies for different values of q. Furthermore, when the patience value is
increased, the accuracies obtained on benchmark datasets become better.
Moreover, the state of art comparison results clearly show that our proposed
model is still competitive with the best available methods. It is also evident
from Figure 11, at q ¼ 50 the accuracies of most datasets are better in
comparison to other values of q, thus, q ¼ 50 can be recommended for
conducting similar experiments on time series datasets with early stopping.

Comparison with the State-of-art Methods

Final results after classification are presented in Table 3. As shown in Table 3, in
20 groups of datasets from UCR archive, CNN-VSR computed the best classi-
fication accuracies for most of the datasets. The rows of Table 3 are highlighted
with three colors namely; Green, Red, and Yellow. These colors depict different
meanings such as 1) Green color shows that the accuracy surpasses the best
accuracy reported by UEA and UCR repository for particular dataset, 2) Yellow
color shows that computed accuracy is competitive with best accuracy, and 3)
Red color depicts that proposed architecture unable to achieve best accuracy. It
can be easily observed from Table 3, that proposed architecture of CNN-VSR is
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Figure 11. Accuracy values for the selected datasets, depending on the patience q.
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the very competitive with other state of art algorithms. By using this architec-
ture, we are able to achieve higher accuracy than best reported accuracy for 12
datasets. The main reason for achieving highest accuracy is that the CNN can
extract and unwrap desirable internal structure, which is essential for generat-
ing deep structures. CNN can automatically generate these features by using
a series of convolution and max-pooling operations.

Conclusion

In this article, a novel CNN-VSR architecture is proposed for univariate TSC.
For this, a novel 2-D transformation approach is developed to convert
1-D time series of any length to 2-D matrix automatically. The implicit
(early stopping) and explicit (dropout) regularization are applied, as time
series signal is prone to over-fit as learning continues. Further, we have
conducted a comparative empirical performance evaluation with the best
available methods for individual benchmark datasets whose information are
provided by UCR and UEA repository. We have performed the experiments
on 20 benchmark datasets from UCR archive. Our results reveal that the
proposed CNN-VSR architecture is competitive with the benchmark meth-
ods by achieving higher performance accuracy. Furthermore, it is demon-
strated through experiments that stopping rule is able to enhance the
performance of the proposed classifier. Moreover, we have also discussed
the optimal model selection and analyzed the effects of different factors on
performance of the proposed CNN-VSR architecture.

Table 3. Comparison of accuracies of proposed CNN-VSR with the best
available methods on UCR benchmark datasets.
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