
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

A New Spatio-Temporal Neural Network Approach
for Traffic Accident Forecasting

Rodrigo de Medrano & José L. Aznarte

To cite this article: Rodrigo de Medrano & José L. Aznarte (2021) A New Spatio-Temporal
Neural Network Approach for Traffic Accident Forecasting, Applied Artificial Intelligence, 35:10,
782-801, DOI: 10.1080/08839514.2021.1935588

To link to this article:  https://doi.org/10.1080/08839514.2021.1935588

Published online: 17 Jun 2021.

Submit your article to this journal 

Article views: 1155

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1935588
https://doi.org/10.1080/08839514.2021.1935588
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1935588
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1935588
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1935588&domain=pdf&date_stamp=2021-06-17
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1935588&domain=pdf&date_stamp=2021-06-17
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1935588#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1935588#tabModule


A New Spatio-Temporal Neural Network Approach for 
Traffic Accident Forecasting
Rodrigo de Medrano and José L. Aznarte

Artificial Intelligence Department, Universidad Nacional de Educación a Distancia — UNED, Madrid, 
Spain

ABSTRACT
Traffic accidents forecasting represents a major priority for traf-
fic governmental organisms around the world to ensure 
a decrease in life, property, and economic losses. The increasing 
amounts of traffic accident data have been used to train 
machine learning predictors, although this is a challenging 
task due to the relative rareness of accidents, inter- 
dependencies of traffic accidents both in time and space, and 
high dependency on human behavior. Recently, deep learning 
techniques have shown significant prediction improvements 
over traditional models, but some difficulties and open ques-
tions remain around their applicability, accuracy, and ability to 
provide practical information. This paper proposes a new spatio- 
temporal deep learning framework based on a latent model for 
simultaneously predicting the number of traffic accidents in 
each neighborhood in Madrid, Spain, over varying training and 
prediction time horizons.

ARTICLE HISTORY 
Received 18 September 2020  
Accepted 19 October 2020  

Introduction

Nowadays, the urbanization trend around the globe has introduced new 
opportunities and issues in the cities. One of the most important aspects of 
modern society is related to the use of motorized vehicles as a method of 
transport. Although very efficient in several ways (Litman 2009), motor vehi-
cles imply problems related to traffic and health care. For example, pollution 
and traffic accidents are some of the principal causes of death in cities all over 
the world (Kelly and Fussell 2015; WHO 2015).

This is the reason why the scientific interest for traffic accidents has 
increased in the past decades, and proposing solutions is a crucial issue for 
the sake of improving transportation and public safety. Being capable of 
understanding and reducing accidents has become an important commitment 
in many cities, as they not only cause significant life losses, but also property 
and economic ones (Peden et al. 2004).

In this work, an effort will be put to study the traffic accident phenomenon 
in the city of Madrid, Spain. This has been the subject of several lines of 
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research in the past, although most previous studies on traffic accident pre-
diction conducted by domain researchers simply applied classical prediction 
models on limited data without addressing many challenges properly, thus 
leading to unsatisfactory performances. For instance, the imbalanced severity 
classes, nonlinear relationship between dependent and independent variables, 
or spatial heterogeneity are usual problems to deal with in order to improve 
previous results in the field. Even with an accurate and complete statement of 
the problem, human and external factors (roads, vehicles, etc.) make this field 
highly challenging (Hoel et al. 2011; Vaa, Penttinen, and Spyropoulou 2007).

Although predicting the exact space-temporal position of accidents is out of 
the scope with actual techniques due to its complexity (Mannering and Bhat 
2014; Zhang, Yau, and Chen 2013), much progress might be done by char-
acterizing important parts of the problem. Trying to reduce the dimensionality 
of the space as much as possible, discovering relevant features or improving 
previous models are some examples of what can be done to provide insight in 
this particular problem.

In this context, this work presents the problem as a spatio-temporal series in 
which traffic intensity and meteorological variables play a central rol in pre-
dicting values for the traffic accidents series. For this purpose, we propose 
a new model, called XSTNN (from Exogenous Spatio-Temporal Neural 
Network) that consists of a deep learning approach for traffic accident regres-
sion based on spatio-temporal data. The model, which extends the Spatio- 
Temporal Neural Network (STNN) proposed by Delasalles et al. (2019) 
through the addition of external variables, is based on partitioning space 
into grid cells and taking advantage of the spatial relations existing in the 
series. A number of urban and environmental variables such as traffic inten-
sity, rainfall, temperature, and wind are collected and map-matched with each 
grid cell. Given the number of accidents as well as the other urban and 
environmental features at each location, we learn a model to forecast the 
number of accidents that will occur in each grid cell in future timesteps.

By presenting the number of traffic accidents as a spatio-temporal series and 
learning how to model it, it is possible (for example) to increase emergency 
service’s response time, focus the efforts to avoid potential dangers, create real- 
time safe routes recommendation systems, and, in short, reduce the losses that 
were discussed above. To the best of our knowledge, this is the first work that 
tackles the traffic accident forecast problem in the city of Madrid, although the 
proposed framework can be easily extend to any particular zone.

The rest of the paper is organized as follows: related work is discussed in 
Section 2, while Section 3 presents our datasets and the problem formulation. 
Section 4 introduces our deep learning model for traffic accident regression 
and Section 5 illustrates the evaluation of the proposed architecture as derived 
after appropriate experimentation. Finally, in Section 6 we point out future 
research directions and conclusions.
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Related Work

Although very much studied, traffic accidents have been treated mostly in 
a “classical” context, by simply using statistical analysis in an attempt to 
understand better the phenomenon and the circumstances surrounding 
them. Examples that illustrate this situation can be found in Abdel-Aty and 
Radwan (2000), Lord (2006), and Roshandeh, Agbelie, and Lee (2016). There 
also are several works dealing with these methodologies and their typical issues 
(as for example Lord and Mannering 2010; Mannering and Bhat 2014). A long 
list of studies tackle the issue from the severity of the injuries perspective. 
Within this last group, de Oña, Mujalli, and Calvo (2011, 2013), Galatioto et al. 
(2018), Meysam et al. (2015), and Qiu et al. (2014) are some examples. 
Although instructive, most of these previous research fail to be able to apply 
all this knowledge to predict future events.

In a closer line to our work, during the last decade a considerably number of 
Artificial Intelligence-based approaches have appeared, taking advantage of 
the large datasets which are available nowadays. We can cite Chen (2017), Li 
et al. (2008), Lin, Wang, and Sadek (2015), and Zhang et al. (2018) as 
examples. As a first glance in the matter, these works provide new tools for 
solving the problem, but they lack relevant information in their analysis and 
mainly focus in showing the better performance of an specific model, without 
deepening in the behavior of their algorithms. However, there are some 
counterexamples like Tarek and Walid (1998), where a fair comparison is 
made between neural and fuzzy models in the field of traffic accident. In order 
to get more sophisticated and precise systems, last researches focus their 
efforts in new models as Variational Autoencoders, Deep Neural Networks, 
and video-based models for detecting and understanding better traffic acci-
dents (Singh and Mohan 2019; Yu, Xu, and Gu 2019; Zheng et al. 2019).

Until now, the references presented here did not tackle the regression 
problem or were all lumped under the same hypothesis: ignoring the impor-
tance of the spatial dimension in the traffic accidents forecasting. However, 
a number of studies have pointed out how relevant this variable is in order to 
get appropiate results (Xu and Huang 2015; Rhee et al. 2016). Since then, more 
and more researches focus their efforts in the spatio-temporal (and not just 
temporal) prediction problem. We can cite Ren et al. (2017), Yang, Wang, and 
Yu (2018), and Yuan, Zhou, and Yang (2018) as some of the most relevant 
works, some of them being classified under the label of Deep Learning. 
Specifically, some of these last references point at exogenous variables as 
helpful in the forecast process.

While traffic accident research from an Artificial Intelligence perspective 
per se is still a young field, its importance makes them be a central variable of 
a vast number of Intelligent Transport Systems studies. For example, several of 
them in which routes recommendation systems and vehicle routing problems 
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are stated, identify traffic accidents as potential variables that might have direct 
impact in the system. Is the case of Eshtehadi, Demir, and Huang (2020), the 
routing problem is tackled by an adapted adaptive large neighborhood search 
algorithm. Similarly, Du et al. (2019) focus their efforts in solving a similar 
problem but trying to minimize the total transportation risk, time and cost by 
using an improved biogeography-based optimization algorithm. As the 
authors point out, when transporting hazardous materials traffic accidents 
might suppose a great risk. In Salman and Alaswad (2018), a model based on 
Markov chain for traffic optimization to decrease congestion is presented. In 
those cases, although unpredicted traffic pattern changes are contemplated, 
a robust traffic accident forecasting system could be beneficial. In the same 
way, Sumit and Akhter (2019) show that traffic accidents might be a main 
actor for road weight calculation. By using a c-means clustering and deep- 
neurofuzzy model, they use (among other variables) real-time accident data 
for detecting traffic congestion, monitoring traffic status, and deciding opti-
mum route. Another example can be found in Nasri, Bekta¸s, and Laporte 
(2018), where it is showed another field that could benefit from traffic accident 
research: autonomous vehicles and their anticipation to potentially dangerous 
situations. Cunneen et al. (2019) show how Artificial Intelligence could also 
contribute in the ethical aspects of this matter. In this same context, Liu et al. 
(2016) propose V2I communications between vehicles in order to improve 
traffic condition. Particularly, an accident prediction system could refine 
future vehicle’s decisions.

Problem Formulation and Data

Problem Formulation

Given a spatial grid S, where each grid is represented as si, and a timestep tj, we 
aim to learn a model to predict the number of accidents in each grid si during 
each time slot tj. This mean that a spatio-temporal sample writes 
as xðsi; tjÞ : j ¼ 1; . . . ;T; i ¼ 1; . . . ; S.

Although spatial zones might be defined arbitrarily, it is expected that 
using intrinsic spatial information could be helpful. More precisely, we 
propose that each grid si represents a neighborhood of Madrid as it is 
expected that each neighborhood presents different peculiarities that might 
be related to traffic accidents. Moreover, we use an hour as the length of our 
timestep tj. Without loss of generality, other values could be chosen for si 

and tj. We work with data from year 2018 for both the training and valida-
tion sets. Only in-city accidents are treated, as road accidents present differ-
ent peculiarities.

For the rest of the section, all the data cleaning and manipulation will take 
into consideration this proposed framework.
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Data Sources

• Traffic accident data: Provided by Portal de datos abiertos del 
Ayuntamiento de Madrid,1 it summarizes all the information related to car 
crashes in the city of Madrid. Specifically, for every accident it shows 
physical location (although not geographycal), date (year, month, and day), 
time (hour), sex and severity for each person involved and several meteor-
ological conditions. The last two variables of this dataset were not taken in 
consideration, as they were not relevant or there were better sources for 
them (concretley weather data later in this same section). For example, sex 
can be relevant when making statistics of the phenomena, but irrelevant 
when trying to predict new accidents.

Spatial information is presented as city addresses (street and number or 
intersection), while temporal information is limited to the hour in which the 
accident was reported.

• Traffic data: As before, provided by Portal de datos abiertos del 
Ayuntamiento de Madrid. This dataset contains historical data of traffic 
measurement points in the city of Madrid. The measurements are taken 
every hour at each point, including traffic intensity in number of cars 
per hour and average speed in m/s. Some other traffic parameters, although 
unused in this project, are present in this set too.

Spatial information is given with the coordinates (longitude and latitude) of 
measurement points, while temporal information is taken every 15 minutes.

• Weather data: Weather data were provided by the Red Meteorológica 
Municipal.2 Weather observations consist of hourly temperature in Celsius 
degrees, solar radiation in W/m2, wind speed measured in ms-1, wind direc-
tion in degrees, daily rainfall in mmh-1, pressure in mbar, degree of humidity 
in percentage, and ultraviolet radiation in mWm-2 records.

Weather information is taken along six different stations. It is reported 
hourly.

Some cleaning work was necessary to work through the data. It is worth 
noting that these decisions are fundamental as error might be introduced in 
the system during this cleaning process.

Firstly, Google Maps Api3 was used for geocoding the adresses provided in 
the dataset.

With respect to traffic intensity, it is worth pointing out that is the only set 
that does not present its information hourly, but every 15 minutes. In order to 
have a final homogeneus dataset, average over every entire hour is calculated. 
Note that typical deviation of traffic intensity over and hour represents less 
than 10% of the real values on average. In addition, the average of the traffic 
intensity is taken for each neighborhood as if every measurement point was 
a different sample from the same phenomenon for every zone. Once more, the 
standard deviation that results from this decision is less than 5% respect to the 
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mean, showing that there is a predisposition to have similar traffic conditions 
for each neighborhood.

Finally, while the actual meteorological data were taken in six substations in 
the city of Madrid, our own data consist of average hourly variables from those 
six substations. Although this decision could be seen as a loss of information, 
this approximation is enough for a first insight. Also, assigning different 
meteorological variables for each accident depending on its location supposes 
an extra difficulty when using a spatial mesh (the six substations) different 
from the one used in this work (neighborhoods of Madrid).

Data Analysis

Through this section, we will explore if our data can be modeled as a spatio- 
temporal series. This will be done by an exploratory analysis for both 
dimensions.

To explore its time dependency, it is possible to use a boxplot of different 
time windows of traffic accident count for different time periods of Madrid as 
in Figure 1. Clearly, the traffic accident patterns change drastically for different 
time periods. Specifically, traffic accidents are more frequent at traffic rush 
hours than that at off-peaks, on weekdays than on weekends, and they reflect 
a decrease in summer holiday days. This figure reveals some characteristical 
periodicities that expose a hidden time dependence in traffic accidents, letting 
us model the series as a temporal one.

To determine whether the number of traffic accidents is associated with the 
spatial location, the heatmap of number of traffic accidents is plotted for 
Madrid in 2018 (Figure 2). As it can be seen, the number of traffic accidents 
is not uniformly distributed, and it is highly related with the geographical 
position of a neighborhood. Usually, the neighborhoods with highest traffic 
accident concentrations lie in the major commercial and business areas.

From this two last figures, we can point out one of the special difficulties of 
the traffic accidents series: how infrequent accidents are. In this context, and 
from the frequentist probability point of view, the odds of an accident taking 
place anytime in an hour and at any neighborhood is about 0:8%.

Deep Model for Traffic Accident Forecasting

This paper presents a new deep learning neural model which is based on the 
work from Ziat et al. (Delasalles et al. 2019). Specifically, they introduced 
a method for spatio-temporal series forecasting problems, such as meteorology, 
oceanography, or traffic, formalized as a recurrent neural network for modeling 
time-series of spatial processes. Our model preserves this nature but it is an 
improvement from the point of view of its usability, allowing us to make use of 
external (or exogenous) variables. Concretely, the model learns these spatio- 
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temporal dependencies through a structured latent dynamical representation, 
while a decoder predicts the observations from the latent space.

Notation

Let us first introduce the notation that will be used througout this chapter. 
Denoting n as the number of series, T their length and m the dimensionality of 
them. In our specific domain, there will be as many series (n) as spatial zones. 
Moreover, m ¼ 1 as every series will be composed of only one dimension: 
traffic accidents.

If we call X as the values of all the series between instants 1 and T, then X is 
a tensor in R T�n�m. At last, Xt 2 R n�m is a tensor that denotes the values of all 
the series at time t.

Figure 1. Periodicities of the traffic accidents series. (a) Number of accidents depending on day of 
the week. Weekends present less number of accidents. (b) Number of accidents for each month. 
August seems to be safer. (c) Number of accidents depending on hour of the day. In this case we 
have the most clear difference.
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The STNN Model

Let Zt be the latent representation, or latent factors, of the series at time t. The 
model has two principal components: the dynamic function (denoted as g), 
and the decoder function (called d). The first one is in charge of controlling the 
dynamics of the system, calculating the next latent state based on the previous 
one: Ztþ1 ¼ gðZtÞ. The second one is a decoder which maps latent factors Zt 

onto a prediction of the actual series values at time t: ~Xt ¼ dðZtÞ, ~Xt being the 
prediction computed at time t.

As it should be clear, the parameters of both functions (g and d) are learned 
so that the essence of the series is captured. Unlike usual neural networks, the 
latent representation Zt is treated as a parameter too, distinguishing this model 
and making it more flexible than usual recurrent neural networks.

The idea behind the spatial component is to consider each zone as 
a different series with its own latent representation at each time step. For 
a latent space dimension of N, Zt is a n� N tensor such that Zt;i 2 R N is the 
latent factor of series i at time t. Thus, we have the following relations: 

d : R n�N ! R n�m (1a) 

g : R n�N ! R n�N (1b) 

Figure 2. Total number of accidents by neighborhoods of Madrid during 2018.
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Not only each spatial zone has a series, spatial information is integrated in the 
dynamic component of the model through a matrix W 2 R n�n

þ that shares 
information between all the zones. Although this matrix will be provided, the 
actual model is also capable of learning it.

The latent representation of each series at time t þ 1 depends on the 
previous state of all the series (included itself). Hence, we can separate the 
calculation of a new state by two different sources: intra-dependency in the 
first term of the right-hand side of (3) and inter-dependency in the second 
term. The first one aims to get the dynamic of each series as an individual 
entity, whereas the second one is devised to exploit spatial relations 
between all series. This way, the model considers a different temporal series 
in each spatial zone while keeping information about the spatial relation 
between all of them. Formally, the dynamic model gðZtÞ is designed as 
follows: 

Ztþ1 ¼ hðZtΘð0Þ þWZtΘð1ÞÞ (2) 

In this last equation, h is a nonlinear function (h ¼ tanh in this project) and Θ 
denotes a parametrized function Θ 2 R N�N . In this case, Θ will be a linear 
function or a multilayer perceptron (MLPs), although could be any parame-
trized function.

Including Exogenous Variables: The XSTNN Model

The main limitation of the STNN is that it is not able to take into account the 
exogenous variables which might be related to the process being modeled and 
which could enrich the internal representation and, thus, improve the predic-
tions. The XSTNN aims to resolve this.

Let us denote the exogenous variables Λ. The main idea will be to change 
equation 2 so that the latent space is modified directly by Λ. These variables are 
temporal series, so they can be treated on the same way we did previously, 
meaning that Λt denotes the slice of Λ at time t. Due to the possibility of using 
several exogenous variables, Λt is a n�m tensor.

By introducing Λ in the estimation of Zt, the model learns the dynamics 
taking into account external information too. As the premise of this work is to 
assume that exogenous variables might change the dynamic of the series, 
learning to mold the system in function of both meets our requirements the 
best.

Once the main idea has been explained, it is necessary to answer some other 
questions. Concretely, there are a few alternatives for reconstructing (2) in the 
way it was intended. Moreover, a discussion about what time step to use with 
Λ is desirable: when computing Zt, both Λt and Λtþ1 might be beneficial. The 
first one represents the idea of a previous state having an effect on the next one, 
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whereas the second option symbolizes the conception of an actual state 
modifying the series.

Let us now introduce some possibilities. First, if exogenous data does not 
present spatial dependency, it can be more efficient to avoid the use of spatial 
relations for Λ. This version writes: 

Ztþ1 ¼ hðZtΘð0Þ þWZtΘð1Þ þ ΛtΘð2ÞÞ (3) 

On the contrary, when exogenous variables may exhibit spatial dependency, 
the same treatment that Z has will be provided to Λ. This notion is captured as 
follows: 

Ztþ1 ¼ hðZtΘð0Þ þWZtΘð1Þ þ ΛtΘð2Þ þWΛtΘð3ÞÞ (4) 

A diagram that represents this last option is presented in Figure 3.
Overall, the model is similar to the STNN. Both the optimization problem 

and the training (loss function, learning algorithm, inference, etc.) are applic-
able to the XSTNN model.

However, we would like to point out the two principal limitations of our 
proposal:

• Using an specific matrix W for a concrete problem means that, for 
different circumstances (for example, a different spatial grid), a retraining is 
needed.

• Both the dynamic and the decoder functions are stationary, meaning that 
it do not change over time. In Delasalles et al. (2019) a method to tackle this 
problem is proposed.

Figure 3. Architecture of the XSTNN model as described in Sect. 4.3.
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Experimental Results

Before explaining the experiments, we will establish what questions we wish to 
answer. They are stated as follow: (1) Are the results of the proposed model 
better when compared with benchmark methods, including classical predictive 
models, tree-based models and STNN? (2) Is our proposed model capable of 
managing different spatial regions or timesteps? (3) Do the forecasting results 
make sense? Does our model provide more insights on the problem? (4) Are 
the predicted accident locations correlated with the ground truth spatially?

Through these questions, we expect to evaluate if the XSTNN model 
supposes a step forward in the prediction of traffic accidents.

Baselines Models and Evaluation Metrics

Several methods have been chosen to be compared with the XSTNN. 
Concretely, the STNN itself, a XGBoost tree-based algorithm (Chen and 
Guestrin, 2016), linear regression, and a naive mean and persistence models. 
The mean model forecasts new values of the series using the mean of past 
values from the same series, while persistence model uses the last value for 
each series for making the prediction.

To evaluate the accuracy and precision of the prediction, we selected Mean 
Absolute Error (MAE) and Bias as our metrics. In a spatio-temporal context 
(Wikle, Zammit-Mangion, and Cressie 2019), they are defined as: 

MAE ¼
1

TS

XT

j¼1

XS

i¼1
jxsi;tj � ~xsi;tj j (6) 

Bias ¼
1

TS

XT

j¼1

XS

i¼1
ðxsi;tj � ~xsi;tjÞ (7) 

where, as it was defined in Section 2, xðsi; tjÞ : j ¼ 1; . . . ;T; i ¼ 1; . . . ; S is 
a spatio-temporal sample from the real series, ~xðsi; tjÞ makes reference to the 
predicted series, S is the total number of spatial grids and T the total number of 
timesteps.

Performance Evaluation

To validate the different proposed methodologies, a time series cross- 
validation scheme called rolling origin is used (Tashman 2000). Rolling origin 
is an evaluation technique according to which the forecasting origin is updated 
successively and the forecasts are produced from each origin. This technique 
allows obtaining several forecast errors for time series, which gives a better 
understanding of how the models perform.
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Let us now describe how the previous procedure is applied in our own 
experiments. Consider the following steps:

(1) The traffic accidents dataset is splitted in ten succesive sets, that is to say, 
starting all sets from January, 1st of 2018 at 00:00, each of those ten sets 
end at a different date between February, 14th at 23:00 and December, 
31st at 18:00. To consider, all datasets are equally spaced and a minimun 
of 45 days have been set for training.

(2) As a test set, we consider predictions within a 5 hour horizon. For 
a train set of T timesteps, this means that the evaluation of the quality of 
the model will be made over T þ 1 to T þ 5 timesteps.

(3) Finally, the ten splitted sets are trained and validated over T þ 1 to T þ
5 timesteps. The final error is the average of all validations. The datasets 
have been chosen with the purpose that different hours and week days 
are tested for a more complete and extensible validation.

This procedure is equivalent for all models. It was applied to both the 
parameter tuning and the final training process.

Experimental Setup and Parameter Tuning

We set up the neural networks experiments and the other two models on 
a external machine proportionated by Departamento de Inteligencia Artificial, 
UNED .4 The STNN and the XSTNN5 were built upon PyTorch. Concretely, 
an early-stopping approach using Adam optimizer with the settings: β1 ¼ 0:0, 
β2 ¼ 0:999, 2 ¼ 10� 9 and wd¼ 10� 6 was used for both methodologies. The 
mean, persistence, linear regression, and XGboost models are built on R, the 
last one made use of the package xgboost (Chen and Guestrin, 2016).

With respect to parameter and hyper-parameter tuning, we grid-searched 
hyper-parameters on each models for the sake of achieving the best possible 
results. The final hyper-parameters used for this work are gathered in Table 1.

Any other hyper-parameter not taken into account in this tuning process, 
are used with their default values. We decided to set matrix W (spatial 
relations, introduced in Section 3), as the inverse of spatial distance. Thus, 
all zones are in some way related but in a bigger degree the closer they are. 
Lastly, each series was rescaled between 0 and 1.

Results and Discussion

In order to identify quantitatively the performance of the different models and 
baselines, Table 2 provides the average prediction error for T þ 1 to T þ 5. 
From this first insight it should be clear that both XSTNN and STNN 
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outperform the other models. As Mean model and XGboost were trained 
taking into account the existence of a spatial grid but without establishing 
relations between them, these results confirm that making use of prior spatial 
information is beneficial for the regression problem. Beyond that, the XSTNN 
presents a better performance than the STNN.

For a more detailed vision, Figure 4 shows the distribution of the metrics 
and the average error by timestep. From this figure, same conclusions can be 
extracted as before: the XSTNN model presents a better general behavior 
compared to the rest of the models. Again, the fact of introducing spatial 
knowledge to the problem stands as an appropriated approach for this parti-
cular series, and our results reinforce the idea that introducing exogenous 
variables is favorable for the regression problem. However, it is worth noting 
that there is not a clear relation between errors and timestep. Although an 
increment on the error by timestep in the prediction is usually expected 
(cumulative error), the randomness of traffic accidents does not let us extract 
clear conclusions from this aspect.

Table 1. Values used for each hyper-parameter. nz is the 
dimension of the latent space. The remaining variables 
were presented in Section 3 or are commonly used 
parameters.

STNN Learning rate 0.01

λ 0.01
nz 2
gðZÞ Linear
Minibatch size 512
Dropout 0.25
XSTNN Learning rate 0.01
λ 0.1
nz 2
gðZÞ Linear
Minibatch size 512
Dropout 0.35
XGBoost Number of rounds 80
Max. depth 15
η 0.1
γ 1
Min. child weight 1
Subsample 0.7

Table 2. Performance for T þ 1 to T þ 5 traffic accident regression.
Model MAE Bias

XSTNN 0:0041� 0:0006 � 0:0006� 0:0004
STNN 0:0045� 0:0006 � 0:0004� 0:0006
XGBoost 0:0052� 0:0006 0:0004� 0:0006
Linear regression 0:0050� 0:0006 0:0002� 0:0007
Mean 0:0052� 0:0007 0:0003� 0:0007
Persistence 0:0055� 0:0008 0:0006� 0:0007
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Beyond the quantitative analysis, now we show some accomplishments 
from our proposed model respect to the STNN. For that purpose, we will 
take a deeper look into a concrete example, without loss of generality.

Let us introduce the following situation: we forecast the accident regression 
series from 17 p.m. to 21 p.m. on a Wednesday. From Figure 1 we know this 
situation corresponds to a high-risk circumstance for traffic accidents to 
happen. In this context, Figure 5 illustrates a comparison of our two principal 

Figure 4. Forecasting performance (MAE and bias) of the different models by timestep together 
with the calculated distributions.

Figure 5. A practical example of the operation of both networks, XSTNN and STNN, for the same 
situation. From 17 p.m. to 21 p.m. on a Wednesday.
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models with a levelplot (time in x axis, neighborhoods in y axis and colored by 
traffic accidents). Let us expose several ideas.

First of all, and unfortunately, the regression problem is far from being 
solved. A comparison of colorbars from both, STNN and XSTNN predictions, 
with the ground truth corroborates this statement. As Chen et. al. have 
documented, after some analysis of traffic accident data, it is difficult to predict 
whether traffic accidents will happen or not directly, because complex factors 
can affect traffic accidents, and some factors, such as the distraction of drivers, 
cannot be observed and collected in advance (Chen et al. 2016). Nevertheless, 
our XSTNN model has proved to be a new step in the right direction, out-
performing the rest of baselines models (Table 2).

Secondly, the next natural question that rises is about the reason of this 
improvement. Again, Figure 5 sheds light on this matter. Whereas the STNN 
quiclky truncates its values close to 0 for every neighborhood and timestep, the 
XSTNN takes some risks and it is able to differentiate between time intervals 
and spatial zones. As the most likely situation is having no accidents for 
each hour and neighborhood, both networks have values approaching to 0 
as outputs.

Certainly, taking more risks does not ensure a better performance in the 
regression problem. It is necessary that the model manages to elucidate 
which time intervals and neighborhoods are more important for the problem 
that we have in hand as a function of past events. In this concrete case, the 
model has learned to prioritize neighborhoods from 1 to 80, as they report 
a vast majority of the total number of traffic accidents in the city of Madrid. 
Besides, the XSTNN reveals a negative trend over the hours as we would 
expect.

As XSTNN learns better to distinguish between time ranges and spatial 
zones, it is possible to find other situations in which, again, this model offers 
more information and assimilates the system’s dynamics in a better way. For 
example, and to corroborate that the XSTNN behaves better in a variety of 
situations, Figure 6 gives evidence of a totally different state on a Sunday from 
6 a.m. to 10 a.m. In this context, we will expect a higher risk at last late hours 
and at past 9 a.m., the XSTNN correspondingly adapting its output to this 
situation. On the contrary, the STNN is not capable of learning the corre-
sponding dynamic. Unlike previously (Figure 5), this time the XSTNN takes 
less risks and its output is closer to 0 as we would expect less accidents on 
a Sunday morning that a Wednesday on the evening as before.

Through the previous discussion we have pointed out how the XSTNN 
infers properties based on the time condition and the concrete spacial zone. 
For this last case, Figure 7 offers an analysis of spatial risk for each neighbor-
hood. Both series, the real and the predicted ones, were rescaled for a direct 
comparison between them. This way, it is clear that the XSTNN is capable of 
reasoning in both dimensions, temporal and spatial.
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In summary, the XSTNN reports a better understanding and learning of the 
dynamic of the system, being more flexible and creative in its prediction. These 
features translate into a better performance than their direct rivals.

Conclusions

Through this work, a new approach for spatio-temporal series forecasting 
called XSTNN has been proposed. The problem of traffic accidents prediction 

Figure 6. A practical example of the operation of both networks, XSTNN and STNN, for a same 
situation. From 6 a.m. to 10 a.m. on a Sunday.

Figure 7. Spatial risk in the same scale for the ground truth (left) and the XSTNN (right).
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was tackled by this new neural network model, showing a better performance 
than the rest of baselines model. Also, the exposed model is easily extendable 
to any temporal or spatial configuration. Although traffic accidents regression 
is challenging due to several difficulties, the XSTNN has proved to stand out 
for its capability to provide a deeper insight in the problem series and to adapt 
its reasoning to a larger number of different situations. Thus, this paper 
demonstrates that spatio-temporal neural networks are a promising field for 
traffic accident prediction in the future.

Future work in this field can be extended to incorporate other features that 
are not necessarily series, like economics or demographics. Also, the XSTNN 
model might be extended by introducing more temporal terms from exogen-
ous series for updating the latent space.

Notes

1. https://datos.madrid.es/portal/site/egob/
2. http://www.mambiente.madrid.es
3. https://cloud.google.com/maps-platform/
4. http://www.ia.uned.es/
5. Code available at https://github.com/rdemedrano/xstnn

Funding

This research was partially funded by the Empresa Municipal de Transportes (EMT) of Madrid 
under the program “Aula Universitaria EMT/UNED de Calidad del Aire y Movilidad 
Sostenible”.

ORCID

Rodrigo de Medrano http://orcid.org/0000-0002-4428-7053

References

Abdel-Aty, M. A., and A. E. Radwan. 2000. Modeling traffic accident occurrence and 
involvement. Accident Analysis & Prevention 32 (5):633–42. doi:10.1016/S0001-4575(99) 
00094-9.

Chen, C. 2017. Analysis and forecast of traffic accident big data. In ITM Web of Conferences 12, 
04029, Guangzhou (China).

Chen, Q., X. Song, H. Yamada, and R. Shibasaki. 2016. Learning deep representation from big 
and heterogeneous data for traffic accident inference. In AAAI: Proceedings of the Thirtieth 
AAAI Conference on Artificial Intelligence. Phoenix, USA.

Chen, T., and C. Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 
- KDD ‘16, 785–94, San Francisco, USA.

798 R. DE MEDRANO AND J. L. AZNARTE

https://datos.madrid.es/portal/site/egob/
http://www.mambiente.madrid.es
https://cloud.google.com/maps-platform/
http://www.ia.uned.es/
https://github.com/rdemedrano/xstnn
https://doi.org/10.1016/S0001-4575(99)00094-9
https://doi.org/10.1016/S0001-4575(99)00094-9


Cunneen, M., M. Mullins, F. Murphy, and S. Gaines. 2019. Artificial driving intelligence and 
moral agency: Examining the decision ontology of unavoidable road traffic accidents 
through the prism of the trolley dilemma. Applied Artificial Intelligence 33(3):267–93. 
Publisher: Taylor & Francis eprint. doi:10.1080/08839514.2018.1560124.

de Oña, J., G. López, and J. Abellán. 2013. Extracting decision rules from police accident 
reports through decision trees. Accident Analysis & Prevention 50:1151–60. doi:10.1016/j. 
aap.2012.09.006.

de Oña, J., R. O. Mujalli, and F. J. Calvo. 2011. Analysis of traffic accident injury severity on 
spanish rural highways using bayesian networks. Accident Analysis & Prevention 43 
(1):402–11. doi:10.1016/j.aap.2010.09.010.

Delasalles, E., A. Ziat, L. Denoyer, and P. Gallinari. 2019 December. Spatio-temporal neural 
networks for space-time data modeling and relation discovery. Knowledge and Information 
Systems 61(3):1241–67. doi:10.1007/s10115-018-1291-x.

Du, J., X. Li, L. Li, and C. Shang. 2019. Urban hazmat transportation with multifactor. Soft 
Computing 24, 6307–6328.

Eshtehadi, R., E. Demir, and Y. Huang. 2020 March. Solving the vehicle routing problem with 
multi-compartment vehicles for city logistics. Computers & Operations Research 115:104859. 
doi:10.1016/j.cor.2019.104859.

Galatioto, F., M. Catalano, N. Shaikh, E. McCormick, and R. Johnston. 2018 November. 
Advanced accident prediction models and impacts assessment. IET Intelligent Transport 
Systems 12(9):1131–41. doi:10.1049/iet-its.2018.5218.

Hoel, J., M. Jaffard, C. Boujon, and P. Van Elslande. 2011. Different forms of attentional 
disturbances involved in driving accidents. IET Intelligent Transport Systems 5 (2):120. 
doi:10.1049/iet-its.2010.0109.

Kelly, F. J., and J. C. Fussell. 2015. Air pollution and public health: Emerging hazards and 
improved understanding of risk. Environmental Geochemistry and Health 37 (4):631–49. 
doi:10.1007/s10653-015-9720-1.

Li, X., D. Lord, Y. Zhang, and Y. Xie. 2008. Predicting motor vehicle crashes using support 
vector machine models. Accident Analysis & Prevention 40 (4):1611–18. doi:10.1016/j. 
aap.2008.04.010.

Lin, L., Q. Wang, and A. W. Sadek. 2015. A novel variable selection method based on frequent 
pattern tree for real-time traffic accident risk prediction. Transportation Research Part C: 
Emerging Technologies 55:444–59. doi:10.1016/j.trc.2015.03.015.

Litman, T. A. 2009. Transportation cost and benefit analysis: Techniques, estimates and 
implications, Victoria Transport Policy Institute, 2nd ed. 1-19.

Liu, Y., J. Ling, Q. Wu, and B. Qin. 2016. Scalable privacy-enhanced traffic monitoring in 
vehicular ad hoc networks. Soft Computing 20 (8):3335–46. doi:10.1007/s00500-015-1737-y.

Lord, D. 2006. Modeling motor vehicle crashes using poisson-gamma models: Examining the 
effects of low sample mean values and small sample size on the estimation of the fixed 
dispersion parameter. Accident Analysis & Prevention 38 (4):751–66. doi:10.1016/j. 
aap.2006.02.001.

Lord, D., and F. Mannering. 2010. The statistical analysis of crash-frequency data: A review and 
assessment of methodological alternatives. Transportation Research Part A: Policy and 
Practice 44 (5):291–305.

Mannering, F. L., and C. R. Bhat. 2014. Analytic methods in accident research: Methodological 
frontier and future directions. Analytic Methods in Accident Research 1:1–22.

Meysam, E., R. M. Ali, H. Farshad, and S. Shahin. 2015 November. Prediction of crash severity 
on two-lane, two-way roads based on fuzzy classification and regression tree using geospatial 
analysis. Journal of Computing in Civil Engineering 29(6):04014099. doi:10.1061/(ASCE) 
CP.1943-5487.0000432.

APPLIED ARTIFICIAL INTELLIGENCE 799

https://doi.org/10.1080/08839514.2018.1560124
https://doi.org/10.1016/j.aap.2012.09.006
https://doi.org/10.1016/j.aap.2012.09.006
https://doi.org/10.1016/j.aap.2010.09.010
https://doi.org/10.1007/s10115-018-1291-x
https://doi.org/10.1016/j.cor.2019.104859
https://doi.org/10.1049/iet-its.2018.5218
https://doi.org/10.1049/iet-its.2010.0109
https://doi.org/10.1007/s10653-015-9720-1
https://doi.org/10.1016/j.aap.2008.04.010
https://doi.org/10.1016/j.aap.2008.04.010
https://doi.org/10.1016/j.trc.2015.03.015
https://doi.org/10.1007/s00500-015-1737-y
https://doi.org/10.1016/j.aap.2006.02.001
https://doi.org/10.1016/j.aap.2006.02.001
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000432
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000432


Nasri, M. I., T. Bekta¸s, and G. Laporte. 2018. Route and speed optimization for autonomous 
trucks. Computers & Operations Research 100:89–101. doi:10.1016/j.cor.2018.07.015.

Peden, M., R. Scurfi, D. Sleet, D. Mohan, A. A. Hyden, and E. Jarawan. 2004. World report on 
road traffic injury prevention.

Qiu, C., C. Wang, B. Fang, and X. Zuo. 2014. A multiobjective particle swarm 
optimization-based partial classification for accident severity analysis. Applied Artificial 
Intelligence 28(6):555–76. Publisher: Taylor & Francis eprint. https://www.tandfonline. 
com/doi/pdf/10.1080/08839514.2014.923166 

Ren, H., Y. Song, J. Wang, Y. Hu, and J. Lei. 2017. A deep learning approach to the citywide 
traffic accident risk prediction. In 2018 IEEE International Conference on Intelligent 
Transportation Systems (ITSC), Maui, Hawaii, USA.

Rhee, K.-A., J.-K. Kim, Y.-I. Lee, and G. F. Ulfarsson. 2016. Spatial regression analysis of traffic 
crashes in seoul. Accident Analysis & Prevention 91:190–99. doi:10.1016/j.aap.2016.02.023.

Roshandeh, A. M., B. R. D. K. Agbelie, and Y. Lee. 2016. Statistical modeling of total crash 
frequency at highway intersections. Journal of Traffic and Transportation Engineering 
(English Edition) 3 (2):166–71. doi:10.1016/j.jtte.2016.03.003.

Salman, S., and S. Alaswad. 2018. Alleviating road network congestion: Traffic pattern optimi-
zation using Markov chain traffic assignment. Computers & Operations Research 
99:191–205. doi:10.1016/j.cor.2018.06.015.

Singh, D., and C. K. Mohan. 2019. Deep spatio-temporal representation for detection of road 
accidents using stacked autoencoder. IEEE Transactions on Intelligent Transportation 
Systems 20 (3):879–87. doi:10.1109/TITS.2018.2835308.

Sumit, S. H., and S. Akhter. 2019. C-means clustering and deep-neuro-fuzzy classification for 
road weight measurement in traffic management system. Soft Computing 23 (12):4329–40. 
doi:10.1007/s00500-018-3086-0.

Tarek, S., and A. Walid. 1998 January. Comparison of fuzzy and neural classifiers for road 
accidents analysis. Journal of Computing in Civil Engineering 12(1):42–47. doi:10.1061/ 
(ASCE)0887-3801(1998)12:1(42).

Tashman, L. J. 2000. Out-of-sample tests of forecasting accuracy: An analysis and review. 
International Journal of Forecasting 16 (4):437–50. doi:10.1016/S0169-2070(00)00065-0.

Vaa, T., M. Penttinen, and I. Spyropoulou. 2007 June. Intelligent transport systems and effects 
on road traffic accidents: State of the art. IET Intelligent Transport Systems 1(2):81–88. 
doi:10.1049/iet-its:20060081.

WHO. 2015. WHO | data.
Wikle, C. K., A. Zammit-Mangion, and N. Cressie. 2019. Spatio-temporal statistics with R. 1st 

ed. Chapman and Hall/CRC, London, United Kingdom.
Xu, P., and H. Huang. 2015. Modeling crash spatial heterogeneity: Random parameter versus 

geographically weighting. Accident Analysis & Prevention 75:16–25. doi:10.1016/j. 
aap.2014.10.020.

Yang, K., X. Wang, and R. Yu. 2018. A bayesian dynamic updating approach for urban 
expressway real-time crash risk evaluation. Transportation Research Part C: Emerging 
Technologies 96:192–207. doi:10.1016/j.trc.2018.09.020.

Yu, Y., M. Xu, and J. Gu. 2019. Vision-based traffic accident detection using sparse 
spatio-temporal features and weighted extreme learning machine. IET Intelligent 
Transport Systems 13 (9):1417–28. doi:10.1049/iet-its.2018.5409.

Yuan, Z., X. Zhou, and T. Yang. 2018. Hetero-ConvLSTM: A deep learning approach to traffic 
accident prediction on heterogeneous spatio-temporal data. In Proceedings of the 24th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining - KDD ‘18, 
984–92. ACM Press, London, United Kingdom.

800 R. DE MEDRANO AND J. L. AZNARTE

https://doi.org/10.1016/j.cor.2018.07.015
https://www.tandfonline.com/doi/pdf/10.1080/08839514.2014.923166
https://www.tandfonline.com/doi/pdf/10.1080/08839514.2014.923166
https://doi.org/10.1016/j.aap.2016.02.023
https://doi.org/10.1016/j.jtte.2016.03.003
https://doi.org/10.1016/j.cor.2018.06.015
https://doi.org/10.1109/TITS.2018.2835308
https://doi.org/10.1007/s00500-018-3086-0
https://doi.org/10.1061/(ASCE)0887-3801(1998)12:1(42)
https://doi.org/10.1061/(ASCE)0887-3801(1998)12:1(42)
https://doi.org/10.1016/S0169-2070(00)00065-0
https://doi.org/10.1049/iet-its:20060081
https://doi.org/10.1016/j.aap.2014.10.020
https://doi.org/10.1016/j.aap.2014.10.020
https://doi.org/10.1016/j.trc.2018.09.020
https://doi.org/10.1049/iet-its.2018.5409


Zhang, G., K. K. W. Yau, and G. Chen. 2013. Risk factors associated with traffic violations and 
accident severity in china. Accident Analysis & Prevention 59:18–25. doi:10.1016/j. 
aap.2013.05.004.

Zhang, Z., Q. He, J. Gao, and M. Ni. 2018. A deep learning approach for detecting traffic 
accidents from social media data. Transportation Research Part C: Emerging Technologies 
86:580–96. doi:10.1016/j.trc.2017.11.027.

Zheng, M., T. Li, R. Zhu, J. Chen, Z. Ma, M. Tang, Z. Cui, and Z. Wang. 2019. Traffic accident’s 
severity prediction: A deep-learning approach-based CNN network. IEEE Access 
7:39897–910. doi:10.1109/ACCESS.2019.2903319.

APPLIED ARTIFICIAL INTELLIGENCE 801

https://doi.org/10.1016/j.aap.2013.05.004
https://doi.org/10.1016/j.aap.2013.05.004
https://doi.org/10.1016/j.trc.2017.11.027
https://doi.org/10.1109/ACCESS.2019.2903319

	Abstract
	Introduction
	Related Work
	Problem Formulation and Data
	Problem Formulation
	Data Sources
	Data Analysis

	Deep Model for Traffic Accident Forecasting
	Notation
	The STNN Model
	Including Exogenous Variables: The XSTNN Model

	Experimental Results
	Baselines Models and Evaluation Metrics
	Performance Evaluation
	Experimental Setup and Parameter Tuning
	Results and Discussion

	Conclusions
	Notes
	Funding
	ORCID
	References

