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ABSTRACT 
 

A hydrodynamic model of the flow in a bifurcating stream is presented. The problem is modeled 
using the Boussinesq approximations, and the governing nonlinear equations solved analytically by 
the methods of similarity transformation and regular perturbation series expansions. Similarity 
expressions for the temperature, concentration and velocity are obtained and analyzed graphically. 
The results show that bifurcation angle and Reynolds number increase the transport velocity. 
Furthermore, it is seen that the magnetic field parameter decreases the velocity in the upstream 
region, and makes it oscillatory in the downstream region.   
 

 

Keywords: Bifurcation; hydrodynamic model; magnetic field; porous; perturbation method; similarity                  
transformation, stream. 
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NOMENCLATURES 
 

'C  :   Concentration (quantity of material being transported) 
D  :   Diffusion coefficient 
G :   Gravitational field vector 

Gc :   Grashof number due to concentration difference 
Gr :   Grashof number due to temperature difference 

'p  :   Fluid pressure  
p  :   Dimensionless pressure  

Pr  :   Prandtl number 
Q  :   Heat absorption coefficient  

Re   :   Reynolds number,  
Sc   :   Schmidt number 

'T    :   Fluid temperature  
( ',' vu )   :   Velocity components of the fluid in the mutually orthogonal axes 

( vu, ) :   Non-dimensionalized velocity components 

( ',' yx ) :   Mutually orthogonal axes  

( yx, ) :   Dimensionless orthogonal axes 

α , β  :   Bifurcation angles 

'ρ  :   Density of the fluid 
ρ   :   Dimensionless density of the fluid 

µ    :   Viscosity of the fluid  

mµ   :   Magnetic permeability of the fluid 

κ    :   Permeability of the porous medium  

eσ
 
  :   Electrical conductivity of the fluid 

υ    :   Kinematic viscosity of the fluid 
χ 2 :   Local Darcy number  

2
1δ    :   Rate of chemical reaction 

Θ    :   Dimensionless temperature 

Φ   :   Dimensionless concentration 

cB    :   Volumetric expansion coefficient due to concentration 
2
oB   :  Applied uniform magnetic field strength 

tB    :   
Volumetric expansion coefficient due to temperature 

pC   :
   Specific heat capacity at constant pressure 

wC  
:   Constant wall temperature maintained 

C∞  :   
Concentration at equilibrium  

ok  
  :   Thermal conductivity of the medium  

2
rk

 
  :   Rate of chemical reaction 

cl    :   Scale length 

M2   :   Hartmann’s number 
N2   :   Heat exchange parameter   

∞
p   :   

Ambient/equilibrium pressure  

wT    :   Constant wall concentration at which the channel is maintained 

T∞    :   Temperature at equilibrium 

oU    :   Characteristic velocity of the flow 
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1. INTRODUCTION 
 

The strength of a stream depends on its mass-
volume and velocity. And its velocity, amongst 
others, depends on the difference in gradient 
between its source in the mountain and mouth in 
a standing water body [1,2]. Based on the slope 
differential, a stream can be divided into three 
regions: the erosion (upper or torrent) zone; the 
transfer (middle or valley) zone, and the 
depositional zone. In the erosion zone, the 
stream flows through a deep descent; therefore, 
its velocity is very high and the flow very erosive. 
Here, the flow vertically down-cuts and removes 
the bed rocks from the valley floor and sides. In 
the mid-valley course, the gradient is lower than 
that of the upper course and so is the velocity, 
but it is able to carry the eroded materials and 
rocks farther. In the depositional course, the 
gradient is very low and so is the flow such that 
the rate of deposition of materials on the stream 
bed, and on the flood plain during flood is very 
high.      
 
Several features like the braided streams (or 
rivers), anastomosing stream, meanders and the 
likes are formed in the depositional zone [1,2]. In 
particular, anastomosing rivers represent a type 
of rivers that are currently of interest in 
geomorphology and sedimentology. They have 
multiple inter-connected channels separated by 
areas of the flood plains. Usually, in the tropical 
region, the river banks are stabilized by 
vegetation and in the arid region by highly 
consolidated rocks. They help to inhibit lateral 
migration of channels. However, at points where 
the banks have loose structures, the stream may 
suddenly abandon its old course for a new 
course or part of its old course to form a by-pass. 
At the points of the by-pass, the river is said to 
divide or anastomose [1,2]. 
 
Much of the works on stream flow have been 
carried out using non-hydrodynamic approaches. 
Some used the hydrologic model, which involves 
the use of spatial form of continuity equation or 
water balance and flux relation expressing 
storage as a function of inflow and outflow (see 
[3]); some the hydraulic model, which is based 
on the use of St. Venant equations (see [4]), and 
others the stochastic probability model, which 
involves the use of Monte Carlo method (see 
[5,6]). All these used computer simulation 
techniques. Therefore, we are motivated to study 
the flow hydrodynamically and analytically. Thus, 
this study intends to develop a hydrodynamic 
model of the flow in a bifurcating stream. 

Some reports exist in literature on flow in both 
bifurcating and non-bifurcating channels. For 
example, [7-13] examined numerically and 
experimentally the flow structure in bifurcating 
systems and observed that bifurcation angle 
increases the inlet pressure and subsequently 
increases the flow velocity of such systems. 
Similarly, [14,15] studied the magneto-
hydrodynamic viscous steady bio-fluid flow 
through a curved pipe with circular cross-section 
under various conditions, using spectral method 
as the principal tool and the Fourier series, 
Chebyshev polynomials, collocation and iteration 
methods as secondary tools, and observed that 
the axial velocity increases with an increase in 
the Dean number, whereas it is suppressed with 
greater curvature and magnetic field parameter. 
Moreso, [16] examined the magneto-
hydrodynamic laminar blood flow through a 
curved blood vessel with circular cross-section, 
using spectral collocation algorithm, and noticed 
that the axial velocity is displaced towards the 
centre of the vessel with corresponding low fluid 
particle vortices for high magnetic field 
parameter, Dean number and low curvature; [17] 
investigated the combined effects of rotation 
(coriolis force), magnetic field and curvature 
(centrifugal force) on the steady flow of an 
incompressible viscous fluid through a rotating 
curved pipe of circular cross-section and 
magnetic field using spectral method of solution, 
and observed that for a high magnetic field, four-
vortex solution is seen in rotating curved 
systems. Most recently, [18] studied the flow of 
blood in convergent and divergent channels 
using the method of perturbation series 
expansion, and noticed that Reynolds number 
increases the flow velocity.  
 
Apart from the gradient differential, a number of 
factors affect the flow of a stream, dynamically. 
Based on this, the purpose of this paper is to 
investigate the effects of bifurcation angles and 
the nature of the source rocks on the flow of a 
bifurcating stream.  
 
This paper is organized in the following manner: 
section 2 is the methodology; section 3 holds the 
results and discussion, and section 4 gives the 
conclusions.  
 

2. METHODOLOGY 
 

The stream is approximately rectangular in form 
and planar at the surface. We assume that the 
flow is axi-symmetrical about the 'z -axis; the 
fluid is incompressible, Newtonian, magnetically 
susceptible (due to the nature of the source 
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rock), chemically reacting, and of a 
homogeneous first order type (i.e. the reaction is 
proportional to the concentration); the fluid 
viscosity is a function of temperature and 
magnetic field; the porous medium is non-
homogeneous, therefore, its permeability is 
anisotropic; the fluid have constant properties 
except that the density varies with the 
temperature and concentration which are 
considered only in the force term. If ( ',' vu ) are 
respectively the velocity components of the fluid 
in the mutually orthogonal ( ',' yx ) axes, the 
mathematical equations of mass balance/ 
continuity, momentum, energy and diffusion 
governing the flow in the presence of bifurcation, 
and considering the Boussinesq and Swell’s free 
flow in vector form become: 
 

  0'. =∇ v                                       (1)    
                                

∞∞ −+−+∇+∇−=∇ CCgTTgvpvv ct '()'('
'

'
'

1
')'.( 2 ββ

ρ
µ

ρ
2

2

'
'

' '
e o

m

Bσ νµ ν
ρ κ ρ µµ

− −                                 (2)  

              

  )'(
'

'
'

')'.( 2
∞−+∇=∇ TT

C

Q
T

C

k
Tv

pp

o

ρρ
       (3)                         

                      
 

( )2 2' . ' ' 'rv C D C k C C ∞
 ∇ = ∇ + − 
 

              (4)   

                                
The problem examines the dynamics of a 
bifurcating stream flowing from a point −∞='x  

towards a shore at oxx =' , as seen in Figure 1. 

The model shows that the channel is assumed to 
be symmetrical and divided into two regions: the 

upstream (or mother) region oxx <'  and 

downstream (or daughter) region oxx >' , where 

ox  is the bifurcation or the nodal point, which is 

assumed to be the origin such that the stream 

boundaries become dy ±='  for the upstream 

region and '' xy α=  for the downstream region. 
Due to geometrical transition between the mother 
and daughter channels, the problem of wall 
curvature effect is bound to occur. To fix up this, 
a very simple transition wherein the width of the 
daughter channel is made equal to half that of 
the mother channel i.e. d±  such that the 
variation of the bifurcation angle is straight-
forwardly used (see [13]). Furthermore, if the 
width of the stream ( d2 ) is far less than its 

length ( ol ) before the point of bifurcation such 

that the ratio of 1
2 <<ℜ=

ol

d
, (where ℜ is the 

aspect ratio), the flow is laminar and Poiseuille 
(see [19]). d  is assumed to be non-
dimensionally equal to one (see [14]). Similarly, 
at the entry region of the mother channel, the 

flow velocity is given as ( )2'1' yUu o −= , where 

oU is the characteristic velocity, which is taken to 

be maximum at the centre and zero at the wall 
(see [14]). Based on the fore-going, the boundary 
conditions are: 
 

1'=u , 0'=v , 1'=T , 1'=C   at  0'=y       (5)   
                     

0'=u , 0'=v , 'T = wT , wCC ='  at  1'=y   (6) 

 
for the upstream/mother channel                                    
 

0'=u , 0'=v , 'T = 0, 0'=C    at  0'=y     (7)     
                                       

0'=u , 0'=v , 'T = γ 1 wT ,  wCC 2' γ= , γ 1 < 

1, γ 2 < 1  at '' xy α=                                 (8)                          
 
for the downstream/daughter channel

 
 

Figure 1. A physical model of symmetrical bifurcating flowing stream (α=β) 
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Introducing the following non-dimensional variables: 
 

  
'

c

x
x =

l
 , 

'

c

y
y =

l
, 

'

o

u
u

U
= , 

'

o
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= , 

'p
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=
,

2

'

oU

ρρ =  , 
'

w

T T

T T
∞

∞

−Θ =
−

,
'

w

C C

C C
∞

∞

−Φ =
−

,       

   
   ρ

µυ = , Re o cUρ
µ

= l
,

2( )t w c

o

g T T
Gr

U

ρ β
µ

∞−= l

  

( )c w

o

g C C
Gc

U

ρ β
µ

∞−= ,
2

2 cχ
κ

= l
, 

           

2 2
2

1
r ck

D
δ = l

, 

2 2
2 e o c

m

B
M

σ
ρµµ

= l , 2 p

o

C
N

k

µ
= , 

D
Sc

ρ
µ= ,

 okρ
µ=Pr  

     

 

into equations (1) - (8),we have   
 

  
0

u v

x y

∂ ∂+ =
∂ ∂                                             

(9)
       

                             
            

2 2
2 2

2 2Re
u u p u u

u v Gr Gc u M u
x y x x y

χ
  ∂ ∂ ∂ ∂ ∂+ = − + + + Θ+ Φ− −  ∂ ∂ ∂ ∂ ∂   

                                                                       

     (10) 

        
         

 
2 2

2 2
Re

v v p v v
u v

x y y x y

  ∂ ∂ ∂ ∂ ∂+ = − + +  ∂ ∂ ∂ ∂ ∂        

(11)           

                                                                                                              
2 2

2
2 2

Re Pr u v N
dx y dx y

  ∂Θ ∂Θ ∂ Θ ∂ Θ+ = + + Θ  ∂ ∂   

 (12)            

 
2 2

2
12 2

ReSc u v
dx y dx y

δ  ∂Φ ∂Φ ∂ Φ ∂ Φ+ = + + Φ  ∂ ∂   

 (13)                    

 
with the boundary conditions 
 

1=u , 0=v , 1=Θ , 1=Φ   at  0=y     
(14)   

                     

0=u , 0=v , Θ = wΘ , wΦ=Φ  at  1=y  (15)           

                                                                 
for the upstream channel 
 

0=u , 0=v , Θ = 0, 0=Φ    at  0=y    (16)            
                                                                                      

0=u , 0=v , Θ = γ 1 Θ w,  wΦ=Φ 2γ , γ 1 

< 1, γ 2 < 1  at xy α=                             (17)        
                     
for the downstream channel 
 
Introducing the similarity solution: 
 

Ψ =( υoU x )½f( )η ,η = y
x

U o

2/1










υ
              (18) 

 

with the velocity components represented as 

 

u = 
y∂
Ψ∂

,  v = 
x∂
Ψ∂−                      (19)

   
into equations (10) - (17),  we have the following 
equivalent equations 
 

'' 0f =                                                      (20)  
 

''' '' 2 ' ' '' ''
1 Re( )f f M f f f ff Gr Gc+ − + + = − Θ − Φ    

(21)               
                                     

'' ' ' ' ' 2RePr( ) 0f f NΘ + Θ + − Θ + Θ + Θ = (22)    

                                                                                                         
'' ' ' ' ' 2

1( ) 0ReSc f f δΦ + Φ + − Φ + Φ + Φ = (23)
  

2 2 2
1 ( )where M Mχ= +

 
 
with the boundary conditions: 
 

'1, 0, 1, 1f f= = Θ = Φ =    at 0=η      (24) 
  

' 0, 0,  = , =    at     = 1w wf f η= = Θ Θ Φ Φ
 
(25) 

 
for the upstream channel  
 

0,0,0,0 ' =Φ=Θ== ff     at  η  = 0 (26)  
 

'
1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ   

1 21, 1γ γ< <
   

at  ax=η                         

(27) 
 

for the downstream channel                    
Equations (20) - (27) show that the similarity 
equations are coupled and highly non-linear. 
Therefore, to minimize the effect of non-linearity 
on the flow variables we introduce perturbation 
series solutions of the form 
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...),(),(),( 1 ++= yxhyxhyxh o ξ
          

(28)
 
 

where 1
Re

1 <<=ξ  is the perturbing parameter. 

We choose this parameter because, almost at 
the point of bifurcation, due to a change in the 
geometrical configuration, the inertial force rises 
and the momentum increases. The increase in 
the momentum is associated with a drastic 
increase in the Reynolds number, indicating a 
sort of turbulent flow at such a point. In this 
regard, equations (20) - (27) become: 
 
for the zeroth order: 
 

0"=of                        (29) 
                            

oooo GcGrfMff Φ−Θ−=−+ '"'" o
2

1      (30) 
       

0'" 2 =Θ+Θ+Θ ooo N                      (31)  

                                     

0'" 1
2 =Φ+Φ+Φ ooo δ                      (32)   

 
with the boundary conditions 
 

' ''1, 0, 0, 1, 1o o o o of f f= = = Θ = Φ =
   

at  0η =         

(33) 
 

' ''0, 0, 0, 0, 0o o o o of f f= = = Θ = Φ =
 
 at  η= 1      

(34) 
       (35)            
for the first order:  
 

0"
'1 =f                                    (35) 

 

11oo
'

1
2

111 ""'"'" Φ−Θ−−=−+ GcGrfffffMff oo       

(36)  
                                   

)'''Pr('" o1
2

11 ooo ffN Θ−Θ=Θ+Θ+Θ
 
(37) 

        

)'''('" o1
2

111 ooo ffSc Φ−Φ=Φ+Φ+Φ δ (38)     

         
with the boundary conditions  
 

0,0,0,0 11
'

11 =Φ=Θ== ff   at  η  = 0      (39)  
         

'
1 1 1 1 1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ

1 21, 1γ γ< <   at  ax=η                         (40)  

    

The zeroth order equations describe the flow in 
the upstream channel, while the first order 
equations    describe the flow in the downstream 
channels. The presence of the zeroth order 
terms in the first order equations indicates the 
influence of the upstream on the downstream 
flow. 
 
The solutions to equations (29) - (34) and (35) - 
(40) are:  
 

( ) ( )1 1
1 1

2 2
1 1

1 1

sinh sinh (1 )
( )

sinh sinh
w

o

e e
η η

µ η µ ηη
µ µ

− −−Θ −Θ = +
          (41)      

                                                                 
( ) ( )1 1
1 1

2 2
2 2

2 2

sinh sinh (1 )
( )

sinh sinh
w

o

e e
η η

µ η µ ηη
µ µ

− −−Φ −Φ = +       (42)    

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )3 2 1 2 1
3 3

3 3

0 sinh 1 sinh

sinh sinh

o p o p

o

f e f e
f

µ η ηµ η µ η
η

µ µ

− + − −

= +
  

 
3( / 2)

( ) ( )(0) ( )o p o pf e fµ η η− +− +
                 (43)   

  
for the upstream region 
 
and 

           

( )
( ) ( ) ( )11

22
111 1

1
1 1

sinhsinh
( )

sinh( ) sinh( )

xx

pw
x ee

x x

α ηα η α µ ηγ µ ηη
µ α µ α

− −− ΘΘΘ = −  

                                    

( ) ( ) ( )2
11

1

0 sinh

sinh( )

x

p e

x

µα η µ η
µ α

− +Θ
+

 

 

( ) ( ) ( ( ) )
( )

1 1 2
1 10 ( )x

p pe α µ η η− − +−Θ + Θ      
 
     (44) 

 

( )
( )

( ) ( ) ( )11
22 212 2

1
2 2

sinhsinh

sinh( ) sinh( )

xx
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x ee

x x

α ηα η α µ ηγ µ ηη
µ α µ α

− −− ΦΦΦ = +  

                                                 

   ( ) ( ) ( )2
21

2

0 sinh

sinh( )

x
p e

x

µα η µ η
µ α

− +Φ
+

 

 

( ) ( ) ( ( ) )
( ) ( )2 1 2

1 10 x
p pe α µ η η− − +−Φ + Φ            (45) 

           
                     

( ) ( ) ( ) ( )
( ) ( ) ( )3 / 2 1 2

3 31 1

1
3 3

0 sinh sinh

sinh sinh( )

x x

p pf e f x e
f

x x

µ α η α ηµ η α µ η
η

µ α µ α

− + −

= +

 
         

( ) ( ) ( )
( ) ( )3 1/ 2( )

1 10 x

p pf e fα µ η η+−− +
                       (46)  

    
for the downstream region 
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3. RESULTS AND DISCUSSION  
 
Using the following realistic and constant values 
of γ1 = 0.6, γ2 =0.6, Φw = 2.0, Θw =2.0, Peh =0.07, 
Pem =0.07, Re= 400, Gr = 0.1, Gc = 0.1, 

2.02
1 =δ , N2 =0.2, 2.02 =χ  and varied values 

of  α, Re and M2, we have the results below.  
 
The purpose of this paper is to investigate the 
effects of bifurcation angle and magnetic field on 
the flow. To this end, Figure. 2 – Figure 7 
illustrate the effects of bifurcation angle, 
Reynolds number and magnetic field on the 
transport of water in a stream. The results 
obtained, show that, for varied values of α, Re 
and M2 the transport velocity increases as α and 
Re increase (see Figure 2 – Figure 4), but 
decreases in the upstream region as M2 

increases (see Figure 5). Furthermore, the 
velocity oscillates and fluctuates in the 
downstream region as M2 increases (see Figure 
6 and Figure 7). 
 
An increase in the angle of bifurcation narrows 
down the width of the stream, which in turn 
increases the inlet pressure in the downstream 
region. Consequent upon this, the velocity 
increases (see Figure 2 and Figure 3). This 
agrees with [8-13]. 
 
More so, the flow in the upstream region is 
laminar and Poiseuille; therefore, its Re is 
moderate. But, almost at the point of bifurcation 
or the entry point of the downstream region, the 

flow exhibits some oscillatory behaviour in the 
upstream due to a change in geometrical

 

 
 

Figure 2. Velocity variations with respect to bifurcation angles (α) in the downstream region 
 

 
 

Figure 3. Velocity-bifurcation angles (α) variations with respect to distances (η) in the 
downstream region 
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configuration. At this point, the inertial force rises, 
leading to a drastic increase in the Re. The 
increase in the Re consequently increases the 
transport velocity. This accounts for what is seen 
in Figure 4. As the Re increases the velocity 
increases and the water rushes into the 
downstream region with a great force. The flow 
regains its laminar nature some distance away 
from the entry region. This result is in perfect 
agreement with [18]. 
 
Similarly, the source rocks in the mountain may 
be made of metallic oxides and salts. These 
dissolve in the water to make it alkaline or saline. 
With this, the water becomes electrolytic, and 
therefore, exists as charges. The action of the 

earth magnetic field on the charges produces a 
mechanical force, the Lorentz force, which gives 
the flow a new orientation. In particular, the 
Lorentz force has a freezing impact on the 
velocity flow structure, thus accounting for what 
is seen in Figure 5. This result is in consonance 
with those of [14,15]  
 
Also, the oscillatory and fluctuating motion 
manifested in the form of back-and-forth 
movement of the water, as seen in Figure 6 and 
Figure 7, possibly, in addition, may be due to the 
internal waves developed in the water in the flow 
process, or may be caused by the interaction 
between the pressure forces and the gravity 
forces.  

 

 
 

Figure 4. Velocity-Reynolds number (Re) variations with respect to distances (η) in the 
downstream region 

 

 
 

Figure 5. Velocity-magnetic field parameter (M2) variations with respect to distances (η) in the 
upstream region 
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Figure 6. Velocity variations with respect to magnetic field parameter (M2) in the downstream 
region 

 

 
 

Figure 7. Velocity-magnetic field parameter (M2) variations with respect to distances (η) in the 
downstream region 

 

The increase and decrease in velocity, coupled 
with the oscillatory motion in the downstream 
have tremendous implications on the flow. The 
drastic increase in velocity at the inlet of the 
downstream channel leads to lateral washing 
away of the embankment, and makes navigation 
risky; the increase in the velocity enhances the 
transfer of sediments towards a standing water 
body ahead of it. On the other hand, the 
decrease in velocity gives room for early 
deposition of sediments on the stream bed, and 
this tends to shallow it up earlier; the oscillatory 
motion of the fluid at the early stage leads to loss 
of energy for the flow, and also makes navigation 
risky.   
 

4. CONCLUSION 
 

The analyses of the flow model show that the 
velocity increases with bifurcation angle and 

Reynolds number; magnetic field freezes the 
motion in the upstream region, and makes it 
oscillatory in the downstream region. The 
increase in the velocity enhances the transport           
of the stream bed loads farther towards                           
the mouths of standing water bodies and saves       
it from early deposition and shallow-up.                       
The effects of bifurcation angle and                     
Reynolds number tends to cushion the adverse 
effects of magnetic field on the flow. This study 
enhances our global understanding of the 
hydrodynamics of flow in bifurcating streams. It is 
also relevant to flow in the bifurcating green 
plants and arteries. 
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