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ABSTRACT 
 
Climate simulations in West Africa have been a challenge for climate models due to the complexity 
and the diversity of processes to be represented. No coherent trend for either decreasing or 
increasing precipitation emerges from the Coupled Model Intercomparison Project Phase 3 (CMIP3) 
Global Climate Model (GCM) products. The Coordinated Regional Downscaling Experiment 
(CORDEX)  is a program sponsored by World Climate Research Program (WCRP) to develop an 
improved framework for generating regional-scale climate projections for impact assessments using 
recent CMIP5 GCM projections. This paper compares patterns of climate projections in the Niger 
basin with the most recent and improved CORDEX-CMIP5 climate projections. It presents a 
comparative evaluation of projected rainfall, temperature, and potential evapotranspiration (PET) 
trends in the Niger basin using 8 GCMs and two emission scenarios (RCP 4.5 and RCP 8.5) 
available within the CORDEX-Africa framework. Rainfall and temperature data from a set of 8 
CMIP5 GCMs under the mild (RCP 4.5) and high (RCP 8.5) emission scenarios were analyzed. The 
GCMs were dynamically downscaled to about 50 km resolution with the RCM SMHI-RCA (Sveriges 
Meteorologiskaoch Hydrologiska Institute) within the CORDEX-Africa regional downscaling 
experiments. Potential evapotranspiration (PET) was computed from temperature based on the 
Hamon model. Spatio-temporal patterns of ensemble median of changes of the eight GCMs relative 
to the present-day reference period of 1970–1999 were evaluated in two future 30 years periods: 
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the near term (2030–2059) and far-term (2070-2099). Results show that climate change will drive an 
increase in precipitation, temperature, and PET in the Niger basin. This analysis will enhance the 
deployment of suitable coping strategies to impending climate trends; especially for food and energy 
production schemes which are prerequisites to sustainable regional developments. 
 

 
Keywords: Climate change; Niger basin; CMIP5; CORDEX; Africa. 
 

1. INTRODUCTION  
 

Climate change impacts are expected to 
exacerbate poverty in most developing countries, 
thereby creating new poverty pockets in 
countries with increasing inequality [1]. The West 
Africa hydrological system is changing due to 
change in climate, and becoming more evident 
with the recent droughts and floods which 
significantly impacted on the hydrological 
balance of the region [1–5]. The reported 
increases in the water column stratification in the 
regional lakes [1], resulted in the reduction of the 
area of Lake Chad prominently since 1970 [6]. 
Climate change have led to reduced discharge in 
West African rivers and increased soil moisture 
drought in the Sahel since 1970; nevertheless, a 
partial wet condition was experienced from 1990 
[7,8].  
 

The Niger River is home to over 100 million 
people and a vital asset for West Africa; a 
developing region unfortunately exposed to 
climate change and its attendant problems. 
According to Novonty and Stefan [9], the past 50 
years witness a reduction in rainfall amount of 10 
to 30% in the basin, which led to a deficit of 20 to 
60% in the river discharge. A severe decrease in 
the river flow which was blamed on the 1970’s 
droughts cases in the Niger basin have been 
reported by Lebel et al. [10]. 
 

As a consequent, the river dried up for several 
weeks in 1985 at the Malanville (Benin) gauging 
station, resulting from a one-year lag of lowest 
rainfall and runoff in 1984 [11]. An analysis of 
selected locations in the upper and middle Niger 
basin showed that projections by Global Climate 
Models (GCMs) and 20 AR4-models were not 
consistent regarding rainfall and runoff changes, 
making management of hydrological projects in 
the Niger basin difficult [12]. 
 

Several studies which include Sylla et al. [13], 
Mariotti et al. [14], Diallo et al. [15]; Oguntunde 
and Abiodun [16]; Laprise et al. [17]; Ibrahim et 
al. [18] and Panitz et al. [19] evaluated future 
patterns of climate change in the region. 
However, most of these studies used a single 
RCM and GCM projection. Multi-model 

ensembles of models, both of GCMs and RCMs, 
have been suggested to be a better predictor 
than individual climate models [20]. In line with 
the study of Diallo et al. [15], the present study 
ensembled the future climate prediction from 
eight (8) dynamically downscaled GCMs in order 
to obtain a better understanding of future climate 
trends in the Niger basin, and as a management 
support for polymakers in the mitigation and 
adaptation planning of climate change in the 
Niger basin region. 
 

2. METHODOLOGY  
 

2.1 Study Area  
 
The Niger River Basin covers 2.27 million km2 
[21], at 4200 km in length, the basin is the third 
longest in Africa (Fig. 1). It is shared by ten 
countries (Algeria, Benin, Burkina Faso, 
Cameroon, Chad, Cote d’Ivoire, Guinea, Mali, 
Niger and Nigeria) with its source located close 
to the Fouta Djallon Mountains in the south of 
Guinea at an altitude about 800 m [16]. The 
Niger crosses areas with different climatic 
characteristics. A large part of the river basin is 
located in the Sahel, a semiarid area between 
the Sahara Desert and the Sudan savannas. 
Precipitation ranges from 250 to 750 mm/year in 
the Sahelian/desert zone to over 2,000 mm/year 
close to the river mouth in Nigeria with length of 
rainy season varying from 3 to 7 months [12]. 
The river flows northeast through the Upper 
Niger basin and enters the Inner Delta in Mali. It 
then flows southeastern through Niger, Benin, 
and Nigeria, where it connects the Atlantic 
Ocean at the Gulf of Guinea. Its main tributary, 
the Benue River, flows from highlands of 
Cameroon and joins the Niger at Lokoja, Nigeria, 
before reaching the Atlantic Ocean.  
  

2.2 Data 
 

Rainfall data from a set of 8 CMIP5 GCMs (Table 
1) with two emission scenarios was used. The 
GCMs were dynamically downscaled to 0.44° x 
0.44° (approximately 50km) resolution with the 
RCM SMHI-RCA (Sveriges Meteorologiskaoch 
Hydrologiska Institute) within the CORDEX-Africa 
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regional downscaling experiments. The 
Coordinated Regional Downscaling Experiment 
(CORDEX)  is a program sponsored by World 
Climate Research Program (WCRP) to develop 
an improved framework for generating regional-
scale climate projections for impact assessment 
and adaptation studies worldwide within the 
IPCC AR5 timeline and beyond. Climate 
projection framework within CORDEX is based 
on the set of new global model simulations 
planned in support of the IPCC Fifth Assessment 
Report (referred to as CMIP5). This set of 
simulations includes a large number of 
experiments, ranging from new greenhouse-gas 
scenario simulations for the 21st century, 
decadal prediction experiments including the 
carbon cycle and experiments aimed at 
investigating individual feedback mechanisms 
[22]. These simulations are based on the 
reference concentration pathways (RCPs), that 
is, those prescribed greenhouse gas 
concentrations corresponding to different 
radiative forcing stabilization levels by the year 
2100. Within CMIP5, the highest-priority global 
model simulations have been selected to be the 
RCP4.5 and RCP8.5, roughly corresponding to 
the IPCC SRES emission scenarios B1 and A1B, 
respectively [23]. The same scenarios are 
therefore also the highest priority CORDEX 
simulations [23]. Catchment boundary of                   

the Niger basin was obtained from Hydrosheds 
[24]. 
 
Rainfall and temperature distribution in West 
Africa have been attributed with the back and 
forth movement of the Inter Tropical 
Convergence Zone (ITCZ) [25]. The movement 
of the ITCZ follows the position of maximum 
surface heating associated with meridional 
displacement of the overhead position of the sun, 
lower latitudes experience higher rainfall and 
lower temperature, whereas higher latitudes 
experience lower rainfall and higher 
temperatures. This has created a large rainfall 
gradient across latitudes which was to be 
considered in the study. The approach of James 
& Washington [26] for GCM/RCM regional data 
extraction was used to account for the latitudinal 
gradient. Basin rainfall and temperature series 
were calculated as the weighted average of all 
grid boxes by latitudes [27,28]. For extraction of 
rainfall, higher latitudes were given lower weights 
than the lower latitudes while the reverse was 
applied for temperature. Catchment potential 
evapotranspiration (PET) was computed from 
extracted temperature with the Hamon model 
[29,30]. This PET model was selected based on 
a recent finding that very simple 
evapotranspiration models relying on mean daily 
temperature are [29].  

 

 
 

Fig. 1. The Niger Basin 
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Evaluation of CORDEX Africa climate models 
was done by Kim et al. [31] who reported that 
CORDEX Africa RCMs reasonably simulated 
basic climatological features of some climate 
variables. Mounkaila et al. [32] showed that 
CORDEX RCMs have remarkable skills in 
predicting the rainfall-onset dates in West Africa. 
Laprise et al. [17] also disclosed that CORDEX 
Africa regional model is able to add value 
compared to the simulations of the driving 
GCMs. Based on these findings, this study 
evaluated 21

st
 century projected climate trends in 

the Niger basin with data obtained from 
CORDEX Africa RCM SMHI-RCA (Sveriges 
Meteorologiskaoch Hydrologiska Institute) forced 
by 8 GCMs under the mild (RCP 4.5) and high 
(RCP 8.5) emission scenarios.  
 

2.3 Spatio-temporal Climate Trends 
 
Ensembles of models, both of GCMs and RCMs, 
were reported as better predictor than individual 
models [20]. Spatial pattern of ensemble median 
of changes of eight GCMs relative to the present-
day reference period of 1970–1999 were 
evaluated in two future 30 years periods: the 
near term (2030–2059) and far term (2070-
2099). Annual and seasonal climate trends from 
2010 to 2100 relative to 1970-1999 were 
presented in line graphs.  
 
Trends were calculated as:  
 

 

 

is the regional future (2010-2100) climate 

variable x of year i and is the historical 
(1970-1999) regional average of climate variable 
x. 
  

3. RESULTS AND DISCUSSION 
 
3.1 Rainfall 
 
Fig. 2 showcase RCP 4.5 ensemble median 
projections in the Niger basin which revealed 
above 5% increase at the source and in the 
Sahelian parts of the basin. The Guinea regions 
around Nigeria are expected to experience about 
5% decrease in rainfall towards the end of the 
century. Annual temporal trends (Fig. 3) shows 
that under the RCP 8.5 scenario the entire basin 
will experience rainfall above 20% increase in the 

most parts of the basin toward the end of the 21st 
century. Monthly trends of rainfall presented in 
Table 1 indicated that there will be increase in 
rainfall amount in the months of July, August and 
September, while the remaining months will 
witness decreases under the two time slices and 
scenarios. These increases in the July, August 
and September months is very important in the 
basin since they are above 60% (based on 
reported observation from 1997 -2010) of the 
annual rainfalls within these three months in line 
with the study of Sylla et al. [33] and Klutse et al. 
[34]. Sahelian region will experience greater 
increases in rainfall compared to other ecological 
zones due to the intensification of the 
hydrological cycle caused by increasing 
atmospheric temperatures [35]. The study also 
revealed that the greater the greenhouse gas 
emissions, the more the hydrological perturbation 
as shown in Figs. 2 and 3 for RCP 4.5 and RCP 
8.5 emission scenarios. 
 
Improved GCM agreements was shown in the 
CMIP5 projected rainfall patterns based on lower 
deviation across models which gives higher 
confidence (Fig. 3). Previously, there was no 
consistent trend in projected precipitation trends 
across the CMIP3 models in West Africa [36]. In 
agreement with study of Sillmann et al. [37] who 
reported reduced spread amongst CMIP5 
models for several temperature indices 
compared to CMIP3 models, despite the larger 
number of models participating in CMIP5. There 
are management difficulties of the Niger Basin 
hydrological projects blamed mostly on the large 
disagreement in rainfall – run off projections [12]. 
The CMIP5 archive showcased greater potentials 
of reducing this challenge if adequately 
assessed. The archive will enhance effective 
climate change impacts assessments for several 
sectors such as water resources, agriculture, 
energy etc, and thereby improving human 
security.  
 

3.2 Temperature and PET 
 
For temperature (Fig. 4), a consistent but 
increasing trend with lower standard deviation 
across the GCMs was projected in the two 
scenarios. In the RCP 4.5 scenario, temperature 
will rise from about 0.05% to 0.1% from the 
beginning to the end of the century, while under 
RCP 8.5 the Niger basin will experience an 
increase of about 0.05% to 0.2% towards the end 
of the century. There will be about 2°C increase 
in monthly temperature at the near future under 
the two scenarios presented. While the far          
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future will experience about 2-5°C monthly 
increase under the two scenarios. For PET (Fig. 
4), a consistent increasing trend with high 
confidence level is also projected in the two 
scenarios. In the RCP4.5 scenario PET will rise 
from about 10% to 20% from the beginning to the 
end of the century while under RCP8.5 the Niger 
basin will experience about 10% to 40% increase 
in PET from beginning to the end of the century. 
Monthly PET will follow similar patterns as the 

annual trend. Increases in air temperature could 
further increase the vulnerability of agriculture 
through a yield resulting from heat stress, 
although large discrepancies exist in yield 
predictions as a result of climate change in the 
region and the sign of change is uncertain [38]. 
Furthermore, a rise in PET more than 
precipitation will aggravate the challenges of 
increased soil moisture drought which is 
domiciled in the region [1]. 

 

 
 

Fig. 2. RCP 4.5 and RCP 8.5 ensemble median precipitation trends at near and far term relative 
to 1970-1999 in the Niger Basin; using 8 GCM-RCM combinations 
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Fig. 3. RCP 4.5 and RCP 8.5 ensemble median 21st century interannual rainfall trends relative 
to 1970-1999 in the Niger Basin; error bars depicts mean plus and minus standard deviation 

respectively, calculated from annual values of all 8 models 
 

 
 

Fig. 4. RCP 4.5 and RCP 8.5 ensemble median 21st century interannual temperature and PET 
trends relative to 1970-1999 in the Niger Basin; error bars depict mean plus and minus 

standard deviation respectively, calculated from annual values of all 8 models 
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Table 1. Monthly trends of climate projections at the Near Future (NF) and Far Future (FF) relative to 1970-1999 
 

Months RCP4.5 RCP8.5 
RAIN (%) TEMP (°C) PET (%) RAIN (%) TEMP (°C) PET (%) 

NF FF NF FF NF FF NF FF  NF FF NF FF 
Jan -25.60 -28.30 1.77 2.43 11.46 16.17 -34.91 -50.78 2.15 4.37 14.26 31.33 
Feb -7.95 -10.12 1.69 2.30 10.93 15.21 -21.26 -20.23 2.13 4.37 13.95 31.26 
Mar -7.21 -9.19 1.84 2.60 12.02 17.60 -12.60 -12.60 2.37 4.73 16.03 34.45 
Apr -3.83 -4.95 2.02 2.64 13.43 17.90 -3.87 -6.51 2.39 4.93 16.10 36.10 
May -0.60 -9.22 1.97 2.81 13.04 19.18 -3.59 0.76 2.53 5.02 17.09 36.86 
Jun -4.15 -8.18 2.01 3.02 13.31 20.71 0.02 -1.37 2.51 5.14 16.97 37.93 
Jul 4.66 7.56 1.92 2.78 12.71 18.99 5.89 11.04 2.38 4.92 16.03 36.04 
Aug 2.45 6.19 1.92 2.68 12.76 18.28 4.70 8.73 2.36 4.84 15.86 35.33 
Sep 4.54 8.71 2.02 2.76 13.41 18.79 6.20 15.54 2.46 4.89 16.62 35.77 
Oct -8.58 -10.15 2.10 2.85 14.00 19.42 -5.60 -2.61 2.61 5.20 17.72 38.39 
Nov -8.04 -12.80 1.97 2.78 13.05 19.00 -16.23 -13.91 2.52 4.94 17.04 36.35 
Dec 1.30 -10.62 1.90 2.56 12.51 17.37 -5.50 -13.25 2.46 4.70 16.66 34.12 
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4. CONCLUSIONS 
 
The Niger basin has been battling with climatic 
challenges which are not well captured in 
projections and observations. The present study 
evaluated the CMIP5 rainfall and temperature 
projections with 8 GCM-RCM combinations. In 
the near future, climate change will drive 
increases in precipitation, temperature, and PET 
in the Niger basin. The Sahelian region will 
experience more considerable increase in rainfall 
compared to other ecological zones. Improved 
GCM agreements in the CMIP5 projected 
precipitation patterns shows higher confidence in 
the CMIP5 projections in the Niger basin. Further 
research should endeavor to use the CMIP5 
climate projections for climate change impacts 
studies on agriculture, hydropower and water 
resources management in the Niger basin.  
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