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Abstract
The impact of a drop on a solid surface is an important phenomenon that has various implications
and applications. However, the multiphase nature of this phenomenon causes complications in the
prediction of its morphological evolution, especially when the drop splashes. While most
machine-learning-based drop-impact studies have centred around physical parameters, this study
used a computer-vision strategy by training an encoder–decoder to predict the drop morphologies
using image data. Herein, we show that this trained encoder–decoder is able to successfully
generate videos that show the morphologies of splashing and non-splashing drops. Remarkably, in
each frame of these generated videos, the spreading diameter of the drop was found to be in good
agreement with that of the actual videos. Moreover, there was also a high accuracy in
splashing/non-splashing prediction. These findings demonstrate the ability of the trained
encoder–decoder to generate videos that can accurately represent the drop morphologies. This
approach provides a faster and cheaper alternative to experimental and numerical studies.

1. Introduction

‘Constant dripping wears through the stone’ is a famous Chinese idiom that means ‘perseverance yields
success’. This idiom perfectly describes the phenomenon of the impact of a drop on a solid surface, which
might appear to be insignificant but actually has great implications and many applications in both nature
and industry [1–5]. This is especially true when splashing occurs, i.e. when the impacting drop breaks up and
ejects secondary droplets [6–10] instead of just spreading over the surface until it reaches a maximum
diameter [11–15]. To name just a few of the implications of splashing, in nature, it is the main cause of
erosion and the propagation of contaminants, while in industry, it can cause visible decreases in printing and
paint quality [16–18].

To minimise the adverse effects of this fascinating and beautiful phenomenon, many studies have been
performed to understand the mechanisms and model the morphology of a splashing drop using
first-principles approaches, including theoretical and numerical analyses [19–22]. Because of the multiphase
nature of a drop impact, the occurrence of splashing is heavily influenced by the physical parameters
involved. These can be categorized into the impact conditions and the respective physical properties of the
liquid drop, the solid surface, and the ambient air [23–28]. Most often, the relationships between the
occurrence of splashing and each of these parameters are not simply monotonic, but rather there is an
interplay between two or more of them. Sometimes, a given parameter can either promote or suppress
splashing depending on other parameters [29–31]. Furthermore, splashing can happen in different ways,
including as a prompt splash, corona splash, receding breakup, and magic carpet breakup [8–10]. For these
reasons, the morphological study of the splashing phenomenon can present complications.
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In recent years, with the increasing availability and accessibility of data, data-driven approaches—and
machine learning in particular—have attracted increasing attention among fluid researchers as a faster and
cheaper alternative or complement to experimental and numerical studies [32–39]. Regarding drop impacts,
several machine-learning-based studies have been carried out [40–43]. Notably, a number of studies on
predicting the maximum spreading factor of a non-splashing drop under various conditions were published
in 2022. For example, Yancheshme et al used the random forest to predict the maximum spreading of a drop
on hydrophobic and superhydrophobic surfaces [40]. Also, Tembely et al compared the performances of the
linear regression model, decision tree, random forest, and gradient boost regression model on predicting the
maximum spreading of a drop on surfaces of various wettabilities [41]. Even for droplet-particle collisions,
Yoon et al used a multi-layer feedforward neural network (FNN) to predict the maximum spreading
diameter under a significantly wide range of impact conditions [42]. Other than the maximum spreading
diameter, such physical parameters-based machine learning was also applied for the investigations of the
drop impact force and the splashing mechanisms. Dickerson et al used a physical parameters-based ensemble
learning algorithm to predict the drop impact force on concave targets [44]. As for splashing mechanisms,
Pierzyna et al [43] successfully improved the splashing threshold proposed by Riboux and Gordillo [7].
Although the machine learning models in these studies showed excellent performances, they were designed
to use physical parameters as inputs and outputs.

As the next step, the objective of this study was to predict the evolving dynamics of the morphology of a
splashing drop during the impact. For that, we focused on the application of image data to explore the
possibility of using computer vision—i.e. the ability of machine learning to process and generate images—as
a strategy for tackling the complications of predicting the morphology of a splashing drop. This was inspired
by Yee et al, who attempted to understand the splashing mechanism through the extraction of morphological
features in splashing drops by visualising how a computer vision-based FNN classified splashing and
non-splashing drops [45]. In this study, the machine-learning algorithm of an encoder–decoder [46–52] was
trained to generate videos in the form of image sequences that can accurately represent the actual
morphological evolutions of splashing and non-splashing drops during their impact on a solid surface under
specific physical parameters. During the training of the encoder–decoder, interpolation prediction was
performed by withholding intermediate data points. The purpose of this is to build an encoder–decoder that
can generate accurate post-impact image sequences for the intermediate data points. This will provide a
faster and cheaper alternative to experiments or numerical simulations on new data points.

The remainder of this paper is structured as follows. The dataset used in this study are described in detail
in section 2 and the detailed implementations of the encoder–decoder model in section 3. The results and
discussion are presented in section 4: the post-impact image sequences generated by the trained
encoder–decoder are qualitatively evaluated in section 4.1, and they are quantitatively evaluated based on the
spreading diameter in section 4.2 and the accuracy of splashing/non-splashing prediction in section 4.3.
Analysis on the prediction process of the trained encoder-decoder is explained in section 4.4. A conclusion
summarizing the results is presented in section 5.

2. Dataset

2.1. Data collection
To collect the image data, experiments were performed using the setup shown in figure 1. A syringe was used
to supply liquid ethanol (Hayashi Pure Chemical Ind., Ltd; density ρ= 789 kg m−3, surface tension
γ = 2.2× 10−2 N/m, and dynamic viscosity µ= 10−3 Pa·s) to form a drop of area-equivalent diameter
D0 = (2.59± 0.08)× 10−3 m at a needle (internal diameter 0.97× 10−3 m), where it detached and impacted
the hydrophilic surface of a glass substrate (Muto Pure Chemicals Co., Ltd star frost slide glass 511 611); the
free-fall distance of the drop H (0.04–0.60 m) was the only manipulated variable. The measured impact
velocity U0 was in the range 0.82–3.18 m s−1, and the resulting Weber number We, which was computed
using

We= ρU2
0D0/γ, (1)

ranged from 63 to 947. For each drop impact, a video was captured using a high-speed camera (Photron,
FASTCAM SA-X) at a frame rate of 45 000 s−1 and a spatial resolution of (1.46± 0.02)× 10−5 m pixel−1.
After a manual frame-by-frame inspection for the presence of secondary droplets, each of the videos was
labelled according to the outcome: splashing or non-splashing. A total of 249 videos were recorded: 141
splashing and 108 non-splashing.
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Figure 1. Experiment setup for the collection of the image data of splashing and non-splashing drops.

To evaluate the collected data in terms of the We and the D0, figure 2 was plotted. Figure 2(a) shows the
plot of We versus H of the collected data. The blue and green circles show the splashing and non-splashing
data, respectively. As shown by the areas filled with grey, the splashing thresholds in terms of impact height
and Weber number were H= 0.20 m and We= 348, respectively. Note that some impacting drops with H or
We values greater than or equal to the splashing thresholds did not splash. The highest values of H and We
for a non-splashing drop were H= 0.22 m and We= 386. Hence, there is a splashing transition within
0.20 m⩽H⩽ 0.22 m or 348⩽We⩽ 386. The black dashed-dotted line shows the plot of the theoretical
Weber number Wetheo against H. The equation used to compute Wetheo is

Wetheo = ρU2
theoD0/γ = 2ρD0gH/γ, (2)

where Utheo (=
√
2gH) is the theoretical free-falling velocity and the gravitational acceleration

g= 9.81 m s−2. The collected data shows the same linear trend as the theory shown by the black dashed-
dotted line. Note that the deviation from the theory increases with H because the drag increased with H
causing U0 to deviate from Utheo.

As for evaluation on the D0, the plot versus H of the collected data is shown in figure 2(b). The black and
red dashed lines show the mean value and the range of two times the standard deviation, respectively. As
shown in the figure, D0 of all splashing and non-splashing data lie between the range of two times the
standard deviation, indicating that there was no significant bias in terms of the drop size.

2.2. Digital image processing
Digital image processing was performed using an in-house MATLAB code to detect the drop and the glass
substrate in each frame of the recorded high-speed videos. The main image processing toolbox used for the
detection is region boundary tracing [53]. The detection was enhanced using other toolboxes, such as
binarisation [54], non-local means filtering [55], circle detection [56, 57], and edge detection [58]. Detection
of the drop and the substrate was necessary for measuring the area-equivalent diameter D0 and the impact
velocity U0 of each data. More importantly, it also prepared the pre-impact and post-impact image
sequences for the input and the output, respectively, of the encoder-decoder model.

The computation of D0 and U0 was performed as follows. First, the frame when the drop first touched
the substrate (t= 0) is identified. In the code, it was defined as the frame when the lowest point of the drop is
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Figure 2. (a) Weber number We and (b) area-equivalent diameter D0 versus the impact height H of the collected data.

lower than or equal to the highest point of the glass substrate. The illustration is shown in figure 3. After the
frame t= 0 was identified, the area bounded by the drop was detected by using the toolbox for region
boundary tracing to compute D0 and the centre of mass. The same procedure was applied to the previous
nine frames to compute the average D0 and U0, which were used to compute We. The related results are
shown and discussed in section 2.1.
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Figure 3. Illustration of the image processing performed on the collected data to identify the frame when the drop first touched
the substrate (t= 0). The red dashed and the blue dashed lines show the area bound by the drop and the glass substrate,
respectively, as detected by the in-house MATLAB code through region boundary tracing. This frame was identified as t= 0
because the lowest point of the red dashed line is equal to the highest point of the blue dashed line.

Figure 4. Examples of the input image sequences.

An input image sequence should indirectly provide the physical parameters of the drop impact to the
encoder–decoder for the prediction of the post-impact morphologies of a drop. Therefore, an input image
sequence was prepared as follows. First, similar to the computation of D0 and U0, the frame when the drop
first touched the substrate (t= 0) was identified. The frame was then cropped from 288× 1024 pixel2 to
250× 250 pixel2, with the drop at the centre of the cropped image while the surface of the glass substrate at
the bottom of the cropped image. This was to ensure the high similarity of the frames extracted for all the
collected data. The same procedure was applied to the two preceding frames. Finally, the cropped frames of
t= 0 and the two preceding frames were combined to form an input image sequence. Some examples of the
input image sequences are shown in figure 4. Note that all the videos were recorded at the same frame rate,
thus the positions of the drop in the first two frames of a pre-impact image sequence change according to
We, where a drop with a higher We had higher positions in the first two frames due to the higher U0. This
indirectly provided the encoder–decoder the information about the We of a drop.
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Figure 5. Illustration of the image processing performed on the collected data to compute the central height of the drop z0. The
blue and green lines show the top and the surface of the glass substrate detected by the in-house MATLAB code.

Figure 6. Examples of the output image sequences.

As for the output image sequence, it should show the morphologies of the drop throughout the impact.
First, the top and the bottom of the drop during the impact were identified to compute the central height z0.
The illustration is shown in figure 5. The frames when the normalised central height of the drop
z0/D0 = 0.875, 0.750, 0.625, 0.500, 0.375, 0.250, and 0.125 were identified and extracted. Since D0 and the
spatial resolutions were kept, z0 in each of these frames had the same value for all collected data. According to
Lagubeau et al [21], these values of z0/D0 correspond to the pressure impact and self-similar inertial regimes.
Each of these seven frames was then cropped from 288× 1024 pixel2 to 640× 200 pixel2, with the drop at the
centre of the cropped image while the surface of the glass substrate at the bottom of the cropped image.
Similar to the input image sequences, this was to ensure the high similarity of the frames extracted for all the
collected data. Finally, these seven cropped frames were binarised and combined to form an output image
sequence. Some examples of the output image sequences are shown in figure 6. Note that binarisation was
performed so that each pixel occupied by the drop morphology had an intensity value of 0 while each pixel
not occupied had an intensity value of 1. Thus, the image-generation process can be considered as a
pixel-by-pixel prediction of whether a pixel is occupied by the drop morphology. Such a strategy was inspired
by volume of fluid method, a commonly used free-surface modelling technique [59].
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2.3. Data segmentation
A well-trained encoder–decoder that can generate accurate post-impact image sequences for the
intermediate data points can provide a faster and cheaper alternative to experiments or numerical
simulations on new data points. To examine the ability of the trained encoder–decoder to perform
interpolation prediction, all image sequences of drops with H= 0.08, 0.16, 0.24, 0.32, 0.40, 0.48, and 0.56 m
were excluded from the training and reserved only for the testing. For the remaining image sequences with
H= 0.04, 0.12, 0.20, 0.22, 0.26, 0.28, 0.30, 0.34, 0.36, 0.38, 0.44, 0.52, and 0.60 m, 90%–10% segmentation
was performed according to each H value. Thus, 146 sets (about 59%) and 103 sets (about 41%) were used
for training and testing, respectively. Hereafter, the reserved H and the non-reserved H values are referred to
as the interpolation impact height H and training impact height H, respectively.

3. Encoder–decoder

An encoder–decoder is a type of artificial neural network that can encode higher-dimensional data into
lower-dimensional representation and subsequently decode the encoded representation into the desired
output of higher dimension [46]. It is widely used for dimensionality reduction and data generation both in
fundamental research and practical applications. An example of its applications for fundamental research is
the study by Lu et al that designed DeepONet based on an encoder–decoder to learn diverse linear/nonlinear
explicit and implicit operators [47]. For the discovery of novel materials, Krenn et al used a variational
autoencoder to reconstruct the molecules [48]. Also, Käming et al applied unsupervised machine learning
using an autoencoder to predict the phase transitions from the experimental data of a Haldane-like model
realised with ultracold atoms [49]. On the other hand, for practical applications, Badrinarayanan designed
SegNet based on a convolutional encoder–decoder for image segmentation [50]. In addition, Khan et al
effectively utilised the framework of an encoder-decoder to extract building footprints from aerial images
[51] and to predict COVID-19 hotspots [52]. Especially, for the prediction of COVID-19 hotspots, they
successfully incorporated a hybrid model of convolutional neural network and long short-term memory to
process time-series data.

3.1. Architecture
In this study, an encoder–decoder with the optimised architecture shown in figure 7 was trained to generate a
post-impact image sequence as the output, from a pre-impact image sequence as the input. This was
implemented in the Python programming language on the Jupyter Notebook [60] using the TensorFlow
libraries [61].

As mentioned in section 2.2, each frame of an input image sequence cropped into size hin ×win = 250×
250 pixels2. With three frames, an input image sequence had the shape of hin ×win × fin = 250× 250× 3,
where fin is the number of frames in an input image sequence. As for an output image sequence, each frame
was cropped into size hin ×win = 640× 200 pixels2. With seven frames, an output image sequence had
the shape of hout ×wout × fout = 640× 200× 7, where fout is the number of frames in an output image
sequence.

In the encoder, an input image sequence is first flattened into a one-dimensional column vector:
X ∈ Rhin×win×fin → sin ∈ RNin , for Nin = 250× 250× 3= 187,500. Then, it is encoded into the latent space by
a linear function and a leaky rectified linear unit (ReLU) activation function. The linear function is

qh =Wencsin + benc, (3)

where qh ∈ RNenc is the output vector of the linear equation,Wenc ∈ RNenc×Nin is the encoding weight matrix,
and benc ∈ RNenc is the encoding bias vector. Here, Nenc is the number of encoded elements, which is set as 32
through hyperparameter tuning. The leaky ReLU function is

sh,i =

{
qh,i for qh,i ⩾ 0

αqh,i for qh,i < 0
(4)

for i = 1, . . . ,Nenc, where the output of the function sh,i is an element of the encoded vector in the latent
space sh ∈ RNenc and α is the negative-slope coefficient, which is set as 0.3.

In the decoder, sh ∈ RNenc is decoded into the output layer by a linear function and a sigmoid activation
function. The linear function is

7



Mach. Learn.: Sci. Technol. 4 (2023) 025002 J Yee et al

Figure 7. Architecture of the encoder–decoder trained to take a pre-impact image sequence and generate a corresponding
post-impact image sequence to predict the morphological evolution of a splashing or non-splashing drop.

qout =Wdecsh + bdec, (5)

where qout ∈ RNdec is the output vector of the linear equation,Wdec ∈ RNdec×Nenc is the decoding weight
matrix, and bdec ∈ RNdec is the decoding bias vector. Here, Ndec is the number of decoded elements, which is
the total number of pixels in a post-impact image sequence. Thus, Ndec = hout ×wout × fout = 640×
200× 7= 896000. The sigmoid function is

sout,i = σ(qout,i) =
1

1+ e−qout,i
, (6)

for i = 1, . . . ,Ndec, where the output of the function sout,i is an element of the one-dimensional column
vector in the output layer sout ∈ RNdec . This function saturates negative and positive values to 0 and 1,
respectively, to generate a binary number in each pixel. Finally, the vector sout is unflattened to form the
post-impact image sequences: sout ∈ RNdec → Y ∈ Rhout×wout×fout .

The prediction by the encoder–decoder can be defined as a mapping Y= F(X,θ). Here, θ denotes the
mapping parameters that consist of all the elements of weight matrices and bias vectors:Wenc ∈ RNenc×Nin ,
Wdec ∈ RNdec×Nenc , benc ∈ RNenc , and bdec ∈ RNdec . Therefore, the total number of parameters Np can be
calculated using the following equation:

Np = Nenc ×Nin +Ndec ×Nenc +Nenc +Ndec (7)

= Nenc(Nin +Ndec + 1)+Ndec, (8)

where Np = 35568032.

3.2. Training
The training of the encoder–decoder was performed by minimising a binary cross-entropy loss function. The
binary cross-entropy loss function was chosen because this study considers the image-generation process as a
pixel-by-pixel prediction of whether a pixel was occupied by the drop morphology. The loss l was computed
using the following equation:

l(strue,sout) =
Ndec∑
i=1

[−strue,i ln(sout,i)− (1− strue,i) ln(1− sout,i)] , (9)
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for i = 1, . . . ,Ndec, where strue is the one-dimensional column vectors of the actual post-impact image
sequences. When sout is close to strue, l will be close to 0. On the contrary, when sout is not equal to strue, l
increases dramatically as sout deviates further from strue.

To determine how each element of the weight matrices and the bias vectors should be tweaked to
minimise l, a backpropagation algorithm was applied to compute the gradient of the computed l with respect
to each element. For the optimization, the adaptive moment (Adam) optimizer [62] was used to effectively
tweak these elements in the direction of descending gradients.

3.3. Hyperparameter tuning
Hyperparameter tuning was performed concurrently with the training of the encoder–decoder. The goal was
to find the best architecture that can achieve the desired performance with the lowest computational cost
possible.

In terms of desired performance, the encoder–decoder should be able to generate the morphologies of
non-splashing drops and splashing drops of different physical parameters. In the case when the desired
performance is not achieved, the encoder–decoder only generates the morphologies of non-splashing drops
regardless of the input.

On the other hand, a low computational cost could be achieved by a simple architecture that has a small
Np. For that, the number of hidden layers in the encoder and the decoder was reduced to zero. As for Nenc, it
was reduced to 32 by using the leaky ReLU function instead of the ReLU function for the activation of the
encoded elements. Note that the α of the ReLU function is 0. The encoder–decoder could not achieve the
desired performance when Nenc was reduced to lower than 32.

4. Results and discussion

4.1. Interpolation prediction of trained encoder–decoder
Several examples of post-impact image sequences generated by the trained encoder–decoder from the
pre-impact image sequences with the H values reserved for testing are shown alongside the pre-impact
inputs and the actual output image sequences in figure 8. The heat maps shown next to the actual image
sequences show the differences between the respective generated and actual image sequences. As shown, the
generated and actual image sequences are generally in good agreement. For non-splashing drops in
particular, the difference is represented only by a thin line along the contour of the drop.

For splashing drops of H= 0.56 m, careful examination of the generated and actual image sequences
reveals a difference in the ejection angle of the secondary droplets. This can be seen from the example shown
in figure 8 (bottom right) in the splashing drop of H= 0.56 m and We= 871. Especially for 0.500⩽ z0/
D0 ⩽ 0.750 (the second to fourth frames), the secondary droplets in the generated image sequences are
ejected outwards, forming a shape like a plate, while those in the actual image sequences are ejected upwards,
forming a shape like a bowl. Nevertheless, the results are satisfying because there is a clear difference in the
distribution and number of ejected secondary droplets between the image sequences generated using
different H values. This can be seen when comparing the splashing drops of H= 0.24 m and We= 398
(bottom left) and H= 0.56 m and We= 871 (bottom right). These findings demonstrate the ability of the
trained encoder–decoder to generate image sequences of splashing drops of different morphologies resulting
from different physical parameters.

4.2. Spreading diameter of impacting drop
For quantitative evaluation of the generated post-impact image sequences, the spreading diameter Dspr of the
impacting drop in each frame (z0/D0) of the image sequence generated by the trained encoder–decoder for
each set of testing data was measured according to the definition shown in figure 8 and normalised by D0.

Figure 9(a) shows the mean normalised spreading diameters Dspr/D0 of the impacting drops averaged
among each frame of the generated and actual image sequences of the interpolation impact heights H, with
the error bars showing the standard deviations. In figure 9(a), for each interpolation H value, the mean
Dspr/D0 values of the generated and actual image sequences of the impacting drop for each z0/D0 overlap,
indicating excellent agreement between the two. The prediction error is quantified by computing the
percentage difference between the Dspr values of the impacting drop in each frame of the generated and
actual image sequences.

Plots of the prediction error for each z0/D0 are shown in figure 9(b). Other than for z0/D0 = 0.875, all of
the prediction errors are low: between−15% and 15%. The prediction error for z0/D0 = 0.875 is relatively
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Figure 8. Examples of post-impact image sequences generated by the trained encoder–decoder and the actual binarised
post-impact image sequences for the drop impact of the excluded heights: (top left) a non-splashing drop of H= 0.08 m and
We= 145 (the red dotted lines in the actual image sequence show the spreading diameter Dspr of the impacting drop at different
z0/D0); (top right) a non-splashing drop of H= 0.16 m and We= 277; (bottom left) a splashing drop of H= 0.24 m and
We= 398; and (bottom right) a splashing drop of H= 0.56 m and We= 871. The heat maps shown next to the actual image
sequences show the differences between the respective generated and actual image sequences, in which green shows correctly
predicted pixels, red shows pixels that are occupied by the actual drop but not by the generated drop, and blue shows the pixels
that are occupied by the generated drop but not by the actual drop.

high because the lamella is not fully developed; for some non-splashing drops, a lamella is not ejected,
whereas for some splashing drops, it is lifted up. These phenomena were considered by Riboux and Gordillo
[6, 7], who stated that the ejection time of the lamella scales with We when the Ohnesorge number Oh is
sufficiently small, and they attributed splashing to the lift force acting on the lamella.

To further analyse the behaviour of Dspr, the Dspr/D0 values of the generated and actual image sequences
were averaged among each interpolationH value and plotted against z0/D0, as shown in figure 9(c), in which
the error bars show the standard deviations. The distribution shows that there is a negative correlation
between Dspr/D0 and z0/D0. This is because as time elapses, the central height of the drop z0 decreases as the
lamella continues to spread, thus Dspr increases. Similar to figure 9(a), for all values of z0/D0, the mean
Dspr/D0 values of the generated and actual image sequences of the impacting drop for each interpolation H
value overlap, indicating excellent agreement between the two.

Plots of the prediction error for each H value are shown in figure 9(d). Other than for H= 0.08 and
0.32 m, all of the prediction errors are again low: between−20% and 20%. The prediction error of
H= 0.08 m is relatively high because the lamella is ejected later due to the low We value. Thus, the standard
deviation of Dspr is higher, especially for z0/D0 = 0.875.

4.3. Splashing/non-splashing prediction
The accuracy of splashing/non-splashing prediction of the trained encoder–decoder was evaluated by
inspecting the impacting drop in each frame (z0/D0) of the generated image sequences. To determine
whether an impacting drop is splashing, the main criteria are the presence of ejected secondary droplets and
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Figure 9. (a) Mean normalised spreading diameters Dspr/D0 of the impacting drops averaged among each frame (z0/D0) of the
generated and actual image sequences for interpolation impact heights H and (b) plots of the prediction errors. (c) Mean Dspr/D0

values of the generated and actual image sequences averaged for each interpolation impact height H and (d) plots of the
prediction errors.

the behaviour of the lamella. Although a splashing drop is mainly characterised by the ejection of secondary
droplets, for some splashing drops, there are very few detached secondary droplets at the early stage of the
impact when z0/D0 = 0.75 (see bottom left of figure 8). Nevertheless, the splashing of these drops can still be
identified by the lifted lamella [7].

It is important to point out that the splashing/non-splashing prediction is not necessarily the same for all
of the frames in a generated image sequence. One example is the image sequence generated for the splashing
drop of H= 0.24 m and We= 397 that is shown alongside the actual image sequence in figure 10. In this
figure, the encoder–decoder correctly generated images that show the morphologies of splashing drops for
z0/D0 = 0.875, 0.750, 0.625, and 0.500, but it generated images showing incorrect morphologies of
non-splashing drops for z0/D0 = 0.375, 0.250, and 0.125. Thus, instead of evaluating the splashing/
non-splashing prediction of a generated image sequence as a whole, it is necessary to perform a
frame-by-frame or z0/D0-by-z0/D0 evaluation.

The accuracy of splashing/non-splashing prediction for each value of z0/D0 of the generated image
sequences is shown by the bar chart in figure 11(a). A high prediction accuracy was achieved, with an overall
accuracy level greater than 79%. For all z0/D0 values except 0.125, the splashing prediction accuracy was
higher than the non-splashing prediction accuracy. This is because when z0/D0 = 0.125, the ejected
secondary droplets are widely scattered away from the impacting drop, and it is therefore difficult for the
trained encoder–decoder to capture and reproduce this. However, when z0/D0 ⩾ 0.625, the secondary
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Figure 10. Post-impact image sequences generated by the trained encoder–decoder and actual binarised post-impact image
sequence of a splashing drop with H= 0.24 m and We= 397. The encoder–decoder correctly generated images showing the
morphologies of splashing drops for z0/D0 = 0.875, 0.750, 0.625, and 0.500, but incorrect morphologies of non-splashing drops
were generated for z0/D0 = 0.375, 0.250, and 0.125.

droplets are only just ejected from the impacting drop and are still accumulating around the lamella; thus,
the splashing prediction accuracies are higher than 90%.

The accuracy of splashing/non-splashing prediction for each interpolation impact height H was also
evaluated, and the results are shown in the bar chart in figure 11(b). Note that the accuracy was computed
frame-byframe for every generated image sequence. For example, for the generated image sequences shown
in figure 10, four out of the seven frames were correctly predicted, hence the accuracy was 57%. Since there is
a splashing transition within 0.20 m⩽H⩽ 0.22 m, there are only non-splashing and splashing prediction
accuracies for H⩽ 0.16 m and H⩾ 0.24 m, respectively. Similar to figure 11(a), the splashing prediction
accuracy is higher than the non-splashing prediction accuracy, except for at H= 0.24 m. The prediction
accuracy is very low for H= 0.24 m because this is the lowest of the splashing H values. In other words, the
impact velocity is the lowest for H= 0.24 m, and this means that splashing features such as the number of
ejected secondary droplets are least prevalent. Nevertheless, the splashing prediction accuracy increases with
H and eventually reaches a perfect 100% for H⩾ 0.48 m.

A more detailed analysis was performed, and the prediction accuracy for each value of z0/D0 at each
interpolationH value is shown by the heat map in figure 11(c). Similar to figures 11(a) and (b), it can be seen
that the splashing prediction accuracy (H⩾ 0.24 m) is higher than the non-splashing prediction accuracy
(H⩽ 0.16 m), except for H= 0.24 m, which has the lowest prediction accuracy. Additionally, the prediction
accuracy is a perfect 100% for each z0/D0 for interpolation H⩾ 0.48 m. For splashing H values, the
prediction accuracy tends to decrease with z0/D0. This shows that the trained encoder–decoder tends to
predict a splashing drop for high z0/D0 values and a non-splashing drop for low z0/D0 values.

4.4. Analysis on the prediction process
Analysis was performed to understand the prediction process by the encoder–decoder, specifically, the image
features of the pre-impact image sequences that the trained encoder identifies and how these image features
affect the generation of the post-impact image sequences by the trained decoder. However, there are too
many parameters involved in the prediction process, the important parameters had to be first identified by
extracting the important encoded elements.

The encoded elements, which are shown by the green nodes in figure 7, play important roles as they
connect the encoder and the decoder. The important elements were extracted by analysing the sh,i computed
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Figure 11. Splashing/non-splashing prediction accuracy of the trained encoder–decoder: (a) for each frame (z0/D0) of the
generated image sequences; (b) for each interpolation impact height H; and (c) for each z0/D0 at each interpolation H value.

for the test image sequences. Here, i = 1, . . . ,Nenc, where Nenc was set to 32. Based on the pre-impact image
sequences, the encoder computes the values of sh,i. The values of sh,i were averaged among the test image
sequences of the same H and plotted in figure 12. The elements with the value sh ≈ 0 were inactive as they
did not affect the computation of sout,i, i.e. the values of the intensity in the post-impact image sequence that
form the drop morphologies. On the other hand, the active elements are i = 1, 13, 14, 16, 17, 23, and 28.
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Figure 12. The value of each encoded element computed for the test image sequences averaged among splashing and
non-splashing drops.

These active elements are important because their values were used by the decoder to compute the values
of sout,i.

Instead of all the encoded elements, the explanation of the prediction process of the trained
encoder-decoder here focuses on the analysis of the elements of i = 14 and 23. These two elements are good
examples because they have the highest range of sh,i. Besides, their relationships with H are opposite to one
another. As H increases from 0.08 to 0.56 m, sh,14 increases from≈ 100 to≈ 500 while sh,23 decreases from
≈ 500 to≈ 100. These indicate that a splashing drop has a high value of sh,14 and a low value of sh,23 while a
non-splashing drop has a low value of sh,14 and a high value of sh,23.

To understand the image features extracted by the encoder from the pre-impact image sequences, the
elements of the encoding weight matrixWenc of i = 14 and 23 were visualised. For this purpose, the
encoding weight elements wenc,14 and wenc,23 were reshaped into the shape of a pre-impact image sequence
and presented in figure 13 with the blue-green-red (BGR) scale from -0.50 to 0.50. Since splashing drops
have a higher U0 than non-splashing drops, the splashing drops cover higher positions than the
non-splashing drops in the first two frames of a pre-impact image sequence. The respective positions are
shown in figure 13, where the dashed circles show the area covered by splashing drops but not by
non-splashing drops, while the dashed rectangles show the area not covered by splashing drops but by
non-splashing drops. Observation on these areas shows that in the colourmap of wenc,14, there are more
negative values (blue) in the dashed circles, while there are more positive values (red) in the dashed
rectangles. Thus, the negative values remain for a non-splashing drop leading to a lower value of sh,14, while
the positive values remain for a splashing drop leading to a higher value of sh,14. On the other hand, in the
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Figure 13. Colourmaps of the reshaped encoding weight elements of i = 14 and 23. In the first two frames, the areas in the dashed
circles correspond to those covered by splashing drops but not non-splashing drops, while the areas in the dashed rectangles
correspond to those not covered by splashing drops but non-splashing drops.

colourmap of wenc,23, there are more positive values (red) in the dashed circles, while there are more negative
values (blue) in the dashed rectangles. Thus, the negative values remain for a non-splashing drop leading to a
lower value of sh,23, while the positive values remain for a splashing drop leading to a higher value of sh,23.

To understand how the decoder computes the intensity values of each pixel in the post-impact image
sequences to predict the drop morphologies, the elements of the decoding weight matrixWdec of i = 14 and
23 were visualised. For this purpose, the decoding weight elements wdec,14 and wdec,23 were reshaped into the
shape of a post-impact image sequence and presented as colourmaps in figure 14 with the BGR scale from
−0.10 to 0.10. Analysis was then performed on wdec,14 and wdec,23.

Since the value of sh,14 is high for splashing drops but low for non-splashing drops, there are more
negative values (blue) in the colourmaps of wdec,14. For splashing drops, since sh,14 is high, these negative
values remain and become zero after being activated by the sigmoid function (equation (6)). These zero
values form the morphology of a drop. On the other hand, for non-splashing drops, since sh,14 is low, these
negative values do not remain but become non-zero values after being activated by the sigmoid function.
These non-zero values do not form the morphology of a drop. Note that there are some positive values under
the distribution of negative values that forms the morphology of a lamella. This can be related to the higher
ejection angle of the lamella of a corona splash, which occurs at a higher velocity than a prompt splash.

A similar but opposite explanation can be made for the element of i = 23. Since the value of sh,23 is low
for splashing drops but high for non-splashing drops, there are more positive values (red) in the colourmaps
of wdec,23. For splashing drops, since sh,23 is low, these positive values do not remain but become zero values
that form the morphology of a drop. On the other hand, for non-splashing drops, since sh,14 is high, these
positive values remain and become non-zero values, thus not forming the morphology of a drop.
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Figure 14. Colourmaps of the reshaped decoding weight elements of i = 14 and 23.

5. Conclusion

In this study, an encoder–decoder model was trained to generate videos in the form of image sequences that
can accurately represent the actual morphological evolutions of splashing and non-splashing drops during
their impact on a solid surface under different impact velocities.

Interpolation prediction was performed by reserving the image sequences of drops of certain
interpolation impact heights H for testing. The image sequences generated for the interpolation H values
showed good agreement with the actual image sequences. Notably, among splashing drops of different H,
there was a clear difference in morphology in terms of the distribution and number of ejected secondary
droplets.

The spreading diameters Dspr of the impacting drops in the generated image sequences showed excellent
agreement with those in the actual image sequences. Averaging among the frames of each normalised central
height of the impacting drops z0/D0, the prediction error was±15% for z0/D0 ⩽ 0.750. Averaging amongH,
the prediction error was±20% for H values other than 0.08 and 0.32 m. The prediction error can be related
to the development of the lamella, and the error is higher at the beginning of the lamella ejection.

The overall accuracy of splashing/non-splashing prediction of the generated image sequences was greater
than 79%. The trained encoder–decoder tends to generate images of splashing drops for frames of higher
z0/D0, while for frames of lower z0/D0, it tends to generate images of non-splashing drops. This is because
more ejected secondary droplets accumulate around an impacting splashing drop when z0/D0 is high; thus,
those splashing features can be easily captured by the trained encoder–decoder. Conversely, when z0/D0 is
low, the ejected droplets are widely scattered away from the impacting drop, and it is thus difficult for this to
be captured by the trained encoder–decoder.

The findings of this study demonstrate the ability of the trained encoder–decoder to generate image
sequences that can accurately represent the morphologies of splashing and non-splashing drops for
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intermediate data points. This approach provides a faster and cheaper alternative to experiments and
numerical simulations. The ability of the trained encoder–decoder could be developed for researching other
phenomena, especially multiphase flows.

Data availability statement

The data cannot be made publicly available upon publication because no suitable repository exists for
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[2] Sun T P, Álvarez-Novoa F, Andrade K, Gutiérrez P, Gordillo L and Cheng X 2022 Nat. Commun. 13 1703
[3] Modak C D, Kumar A, Tripathy A and Sen P 2020 Nat. Commun. 11 4327
[4] Breitenbach J, Roisman I V and Tropea C 2018 Exp. Fluids 59 55
[5] De Ruiter J, Lagraauw R, Van Den Ende D and Mugele F 2015 Nat. Phys. 11 48–53
[6] Riboux G and Gordillo J M 2017 Phys. Rev. E 96 013105
[7] Riboux G and Gordillo J M 2014 Phys. Rev. Lett. 113 024507
[8] Yokoyama Y, Tanaka A and Tagawa Y 2022 Forensic Sci. Int. 331 111138
[9] Hatakenaka R, Breitenbach J, Roisman I V, Tropea C and Tagawa Y 2019 Int. J. Heat Mass Transfer 145 118729
[10] Rioboo R, Tropea C and Marengo M 2001 At. Sprays 11 155–65
[11] Liu X, Zhang X and Min J 2019 Phys. Fluids 31 092102
[12] Gordillo J M, Riboux G and Quintero E S 2019 J. Fluid Mech. 866 298–315
[13] Lin S, Zhao B, Zou S, Guo J, Wei Z and Chen L 2018 J. Colloid Interface Sci. 516 86–97
[14] Huang H M and Chen X P 2018 Phys. Fluids 30 022106
[15] Clanet C, Béguin C, Richard D and Quéré D 2004 J. Fluid Mech. 517 199–208
[16] Fernández-Raga M, Palencia C, Keesstra S, Jordán A, Fraile R, Angulo-Martínez M and Cerdà A 2017 Earth-Sci. Rev. 171 463–77
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