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Abstract
We show how conditional generative neural networks can be used to efficiently find nanophotonic
devices with desired properties, also known as inverse photonic design. Machine learning has
emerged as a promising approach to overcome limitations imposed by the dimensionality and
topology of the parameter space. Importantly, traditional optimization routines assume an
invertible mapping between the design parameters and response. However, different designs may
have comparable or even identical performance confusing the optimization algorithm when
performing inverse design. Our generative modeling approach provides the full distribution of
possible solutions to the inverse design problem, including multiple solutions. We compare a
commonly used conditional variational autoencoder (cVAE) and a conditional invertible neural
network (cINN) on a proof-of-principle nanophotonic problem, consisting in tailoring the
transmission spectrum trough a metallic film milled by subwavelength indentations. We show how
cINNs have superior flexibility compared to cVAEs when dealing with multimodal device
distributions.

1. Introduction

Inverse design is the process of matching a device or process parameters to produce a desired performance.
The possibility of enabling new materials and nanodevices by ‘reverse-engineering’ them from the desired
properties and characteristics has drawn a great deal of both fundamental and applied interest. Inverse design
is particularly popular in the field of nanophotonics, where the ongoing quest for miniaturization requires
the exploration of extremely large parameter spaces spanned by freeform geometries and a wide variety of
materials combinations. To efficiently explore these vast parameter spaces, the inverse-design problem is
commonly approached using computational optimization techniques capable of identifying solutions
beyond human intuition. Techniques such as gradient-based topology optimization [1–5], evolutionary
design [6, 7] and more recently artificial neural networks [8–11] and global optimization nets [12, 13] have
been used successfully to design devices that vastly outperform designs based on human intuition.

To date, however, most inverse design approaches rely on the assumption that a unique one-to-one
mapping exists between the device and a given design target. In reality, it is often the case that multiple device
designs exhibit comparable or even identical performance, yielding a multimodal device distribution. One
clear example of this phenomenon are systems or devices with symmetries. For example, the structure shown
in figure 1 (which we will use throughout this manuscript for illustrative purposes) consists of a central slit in
a thin metal film flanked on each side by different gratings consisting of periodic indentations in the metal.
The system has a natural plane of symmetry in the middle of the slit as it does not matter for the spectral
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response if the gratings are swapped. While this may be obvious to the reader, this situation is less clear to an
optimization routine which tries to minimize a target and assumes that there is, at least locally, a minimum.
Consequently, the optimization routine may oscillate between the two solutions, preventing the algorithm
from converging. Here we chose a photonic structure as a testbed since models of photonic systems show
very good agreement with experiments [14, 15]. In fact, the agreement is so well that we can use the model as
a surrogate without need for further experimental benchmarking.

Several studies have attempted to address the issue of multimodality, though with limited success. Liu
et al [9] observed the problem of multimodality when trying to teach a neural network to reverse-engineer
stacks of dielectrics to exhibit desired transmission spectrum. While the forward simulation predicting the
transmission spectrum from device parameters could be trained with ease, they observed that matching a
stack to a given spectrum (i.e. the inverse pass) was impossible. They attributed this problem to
multimodality, meaning that different dielectric stacks map to the same response, preventing the network
from converging. They circumvented this issue by using a tandem network in which the forward and
backward passes feed into each other to stabilize training. While this approach allows the network to
converge despite the multimodality of the training set, the trained network only offers a single solution while
other possible solutions are lost.

To truly move beyond one-to-one mapping, recent approaches have explored the use of generative
models, including for example VAEs [16] and generative adversarial networks (GANs) [10, 17]. Rather than
assuming a simple one-to-one mapping, these generative methods model a distribution of possible devices
and their design parameters allowing for the identification of multiple solutions. Ma et al [18] employed
such a generative model for inverse photonic design, training a VAE to generate proposals for a unit cell of a
periodic metamaterial exhibiting a set of desired transmission and reflection properties. However, VAEs are
restricted to simple parametrized distributions in their latent space, limiting their expressive power when the
device distribution is multimodal. Normalizing flows have emerged as a powerful tool to construct more
expressive distributions [19–23] beyond Gaussians to model the true data distribution, but have so far not
been used in inverse photonic design. Conditional GANs (cGANs) [24] are also in principle capable of
modeling multimodal distributions of parameters but are very prone to mode collapse [25] meaning that the
multimodal data distribution is mapped to only one of the modes while still ignoring other possible
solutions.

Here, we propose the use of conditional invertible neural networks (cINNs) [26, 27] to tackle the issue of
multimodal device parameters in inverse photonic design. cINNs have been recently introduced as a highly
versatile platform for inverse design. They belong to the family of flow-based techniques [26, 28], which
learn mappings between different distributions. Since they are trained with maximum likelihood loss, mode
collapse as observed in GANs, is virtually impossible [26]. Moreover, since the same network is used for the
forward and backward pass, only half of number of parameters is necessary. cINNs have been shown to work
in a wide range of applications, from improving the robustness in medical imaging and inverse kinematics
[26] to changing the style of images [29]. Here, we apply cINNs to the field of photonics, demonstrating their
capability to effectively deal with multimodal device parameters in inverse photonic design. As an example of
our approach, we train the cINN to find the geometrical parameters of the aforementioned slit in a thin
metal film flanked by periodic grooves [15, 30] to match a desired transmission spectrum. The slit flanked by
gratings is particularly suited for this purpose, as the symmetry of the structure intrinsically introduces a
multimodal distribution in the parameter space of the device geometry. In contrast to past approaches, we
show that the cINN provides all possible solutions to the inverse design problem. We emphasize this by
comparing our results to a VAE network trained on the same data.

The structures under study are shown schematically shown in figure 1. A central subwavelength aperture
of width a0 in a silver film of thickness t is surrounded on both sides by gratings made from a finite periodic
array of grooves. The periodicity Λ and height h of the grooves can be different on each side of the slit. The
structure is completely described by the parameter vector x= [Λ1,Λ2, h1, h2]. The width of the groves is
fixed to always be half of the corresponding periodicity, i.e. a duty cycle of 50%, and the entire structure is
assumed to be embedded in air with a refractive index n= 1.

Extraordinary optical transmission occurs when surface plasmon polaritons (SPPs) excited by the
incident light at the air-metal interface constructively interfere at the subwavelength aperture. By introducing
variations in the pitch of the periodic corrugations, the wavelengths at which SPPs can be excited can be
modulated, allowing for control over the transmission spectrum of the structure. For a slit which is flanked
by the same gratings on each side (i.e. Λ1 = Λ2 and h1 = h2), a single transmission peak dominates the
transmission spectrum. For an asymmetric configuration, i.e. Λ1 ̸= Λ2 and h1 ̸= h2, more complex
transmission spectra can occur, for example yielding two separate transmission peaks at different
wavelengths, each corresponding to one of the two periodicities of the gratings. Intuitively, the mirror image
of each asymmetric configuration has an identical transmission spectrum, illustrating the intrinsic
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Figure 1. (A) and (C) show the devices under investigation: a slit with fixed width a0 flanked by gratings on each side with
periodicity Λ1 and Λ2, respectively, and a duty cycle of 50%. The two devices in (A) and (C) are mirrored along a plane going
through the center of the slit and have the same transmission spectrum as shown in (B). The cINN in (E) takes the simulated
spectrum corresponding to a specific device and maps the device parameters in (D) to the latent space variable z which is the
normal distribution in (F). Since two different devices generate the same transmission spectrum the device parameter space in
(D) show to modes. The cINN is capable of mapping this complex distribution to the simple Gaussian in (F) that can be easily
sampled.

multimodality that is present as a result of symmetries in the geometry. Importantly, while this type of
multimodality of mirrored designs is straightforward for human intuition, it causes severe problems in
inverse photonic design where one target spectrum suddenly has multiple design solutions associated with it.

The transmission through the slit flanked by gratings is simulated using the coupled mode theory (CMT)
framework [15] The CMT framework has been used extensively to simulate transmission and extraordinary
optical transmission (EOT) phenomena in a variety of systems [15, 30] and is known to provide results with
excellent agreement to the experiments at minimal computational cost. As a result, the generation of a full
training set of 60 000 different structures can be performed efficiently. The training set is divided between
45 000 structures for training, and 15 000 structures for validation.

We modeled our cINN after Ardizzone et al [27]. using their FrEIA framework, the technical details are
described in the Methods section and the Supplementary Information. Briefly, the cINN takes the device
parameter vector and maps it to a latent space variable z, which can be sampled conveniently to generate new
devices by running the cINN in reverse. The cINN additionally takes a conditional vector extracted from the
spectrum corresponding to the device as an input. The conditioning network consists of a ResNet-34 [31]. To
benchmark the performance of our cINN, we compare it to a commonly used conditional Invertible Neural
(cVAE) [32] and two Bayesian methods.

2. Results and discussion

The power and flexibility of the cINN for this class of problems is showcased in figure 2 Two target spectra
from the validation set are chosen (black solid lines in (A) and (B)). Each time, 104 device parameters are
generated by sampling from the trained cINN with the spectra in (A) and (B) as conditioning inputs. The
resulting distributions of parameters of the devices exhibiting these transmission spectra are shown as
histograms in (C)–(F) and (G)–(J). The solid black line with the triangle on top marks the original
parameter vector that has been used in the simulation. The generated parameters are then passed to a
forward network which has been trained previously. The forward network is a fully connected dense network
which takes device parameters as input and outputs the transmission spectrum of that device and its sole
purpose is to speed up the generation process. In the Supporting Information evidence is presented that this
forward network indeed models the generative process with high fidelity. The regenerated spectra show
excellent agreement with the target spectrum. The mean of the 104 regenerated spectra fall exactly on top of
the target and the shaded regions present the 2nd to 98th percentile region, meaning that 96% of the
regenerated spectra lie within that region. The cINN correctly learns that the spectrum in A has been
generated from gratings with the same periodicity on both sides of the slit (panels (C) and (E) in figure 2),
while the spectrum in B requires two different periodicities (panels (G) and (I) in figure 2). Also note that, as
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Figure 2. (A) and (B): Two randomly chosen spectra from the validation set the network has never seen before, shown as solid
black lines. (C)–(F), (G)–(J): The generated device parameters conditioned on that specific spectrum. Each time 104 devices have
been sampled. The solid line with the triangle on top is the original parameter vector used in the simulations. The generated
parameters and then used to reconstruct the corresponding spectra with the forward network. The mean of the generated spectra
is shown as a dashed line in (A)-(B) and perfectly agree with the conditioning input. The shaded regions in (A) and (B) are the [2,
98] percentile intervals showing how confident the network is about the solution.

previously mentioned, the dataset was constructed randomly and the network was still able to fully capture
the underlying symmetry properties of the problem. It is also interesting to note that in panels (D) and (F)
the network generated two connected peaks for the groove depth. Since the regenerated spectra show
excellent agreement it seems that the network is not so sensitive to groove depth for that specific
conditioning input. In panels (H) and (G) of figure 2, the proposed grove depths are clearly separated.

The added flexibility of the normalizing flow is apparent when comparing the latent space generated by
the cINN with the latent space of a cVAE [18, 32] in figure 3. In our example structure, the latent space has
dimensionality 4 and we chose one spectrum as conditioning input and sampled 10 000 samples as before.
Figure 3 shows scatter plots of generated periodicities p1 and p2 for the cINN (figure 3(A)) and the cVAE
(figure 3(B)). In the case of the cINN, the vast majority of solutions concentrates around the target values for
p1 and p2, demonstrating the excellent performance of this network. Please note that the two clusters are
connected by a small number of points due to the fact that the specific normalizing flow that we used
maintains continuity and cannot split a unimodal base distribution. The result, however, is a good enough
approximation, since these points correspond to 400 samples out of 104 or 4%. The cVAE, however, has a
much larger spread in the latent space, showing both less precise and less accurate performance as compared
to the cINN.

To understand the large difference in the performance of the cINN and the cVAE, we can have a closer
look at their respective latent spaces shown as the insets of figures 3(A) and (B). The complete latent space is
reproduced in the Supporting Information, here only z1 and z2 are shown since they capture the relevant
information. While the latent space of the cINN for the two solutions is a Gaussian, the cVAE is far from
normally distributed. The resulting limitation for sampling becomes obvious: With the cINN we can directly
sample from a Gaussian with zero mean and a variance of one in the latent space and obtain accurate results
from the inverse pass of the cINN. If samples are drawn with the same method from the latent space of the
cVAE, a large number of out-of-distribution samples are generated, resulting in incorrect predictions. In
both cases the generated parameter vectors were used to re-simulate the transmission spectra of the proposed
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Figure 3. A Given the conditioning input shown in (C) as the black solid line, 10′000 device parameters are generated with the
cINN. The true device parameters are indicated by a black dot, the mean of the generated clusters as diamonds. The clusters were
separated with k-means clustering. The cINN learns to home in on the true device parameters that give rise to this particular
spectrum. (B) 10′000 device parameters generated with the cVAE. Again, the means of the generated parameters are indicated by
diamonds and it is clear that the cVAE is struggling to focus. When looking at the latent space produced by the cVAE in the inset,
the problem becomes apparent: the latent space is not well approximated by a Gaussian. The latent space of the cINN, however, is
well approximated by a Gaussian and can therefore be easily sampled. Note that the two clusters in (A) are connected by a line
which is due to the fact that the normalizing flow of the cINN can only deform the Gaussian latent space to match the data
distribution, maintaining continuity.

devices as shown in figure 3(C). The cINN shows excellent agreement as before, while the results from the
cVAE are neither accurate nor precise. Please note there are techniques to alleviate this problem by sampling
from the aggregated posterior as suggested by Tomczak and Welling [33], or by generating another VAE for
sampling as suggested by Dai and Wipf [34], but that would add an additional layer of complexity. As
mentioned before, normalizing flows as described in Kingma et al [19]. would theoretically allow to model
more flexible posterior distributions but add more complexity as well. In contrast, the cINN offers a
powerful yet simple framework to model complex data distributions.

At this point it is important to highlight how the model assumptions and loss functions are hindering
training on multimodal distributions or even leading it to failure. First, consider the commonly used mean
squared error (MSE) which is used in a regression setting. When using MSE in this context the implicit
assumption is made that there is a one-to-one mapping between devices and responses. However, if two
devices map to the same response, the gradients propagated trough the network will point into different
directions and the network will not be able to choose between the two and the result will be a solution that is
neither or. As discussed earlier, a cVAE struggles with multimodal datasets because the Gaussian for the
posterior, while being easy to sample, is very restrictive and the model ends up lacking expressive power [35]
or the sampling becomes more tedious. And while a cVAE can be augmented with normalizing flows to
model multimodal distributions, this addition makes them harder to train and will use more parameters.
Using a mixture of Gaussians [36] for the latent space or a VampPrior [33] allows to build more expressive
posteriors but also sacrifices simplicity and ease to train. The cINN, by construction, leads itself to the
modeling of complicated data distributions, no assumptions need to be made about the posterior and finally
the same network is used for the forward and inverse pass, reducing the amount of parameters compared to
the cVAE.

In addition to the comparison with the cVAE we have also compared our cINN approach with traditional
Bayesian methods. The first Bayesian method is approximate Bayesian computation with a sequential Monte
Carlo sampler [37], which is likelihood-free and therefore conceptionally closer to our neural network (NN)
approaches. The second method is based on nested sampling which is the state-of-the-art in model
comparison and parameter estimation but requires an approximation of the likelihood [38–40]. Even though
both methods recover valid parameter distributions including multimodality, the computational cost is
exceedingly high. Both Bayesian methods are iterative by construction and require large numbers of function
evaluations on the order of the size of the training set for the NNs to recover the parameters of just one target
spectrum. A detailed comparison between the different methods is provided in the supporting information.
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3. Conclusion

In summary, we have shown how a multimodal device distribution can lead to pitfalls with commonly used
generative models to learn these device distributions. Furthermore, we demonstrated the flexibility of cINNs
how they can, with no additional knowledge about the device distribution, learn a mapping that can be used
to sample new structures, providing the full posterior of the device distribution, meaning all the possible
solutions to the inverse design problem. In general, adopting a probabilistic approach provides a more
complete picture of all the possible solutions to an inverse design problem and how confident the algorithm
is. Here we note that very recently the use of cINNs has been mentioned in the context of benchmarking
different deep learning approaches to inverse models for designing artificial electromagnetic materials [41],
but without considering multimodal device distributions. On a similar note, GANs have also been employed
for inverse photonic design [10, 17] but have not been thoroughly explored to generate distributions of
devices in the context of generative modeling.

The cINN provides solutions with high accuracy and precision on all solutions in the design space,
whereas the cVAE only captures the fact that the solution space is multimodal, but with low precision and
accuracy. The reason for that is the limited flexibility unimodal Gaussian latent variables provide. While
flow-based models and more expressive priors could alleviate that problem, the cINN offers a simple and
straightforward framework and simple to train solution. Finally, it is important to emphasize that while we
have focused on the slit flanked by periodic corrugations as a proof-of principle problem the advantage of the
cINN in solving multimodal device distributions is generic and may help solve a large variety of inverse
design problems to explore the design space of nanophotonic devices.

4. Methods

We implemented a cINN following the approach of Ardizzone et al [27]., using their FrEIA framework. As
shown schematically in figure 1(E), the basic building block of the cINN is the (conditional) affine coupling
block first proposed by Dinh et al [28]. The network models a change of variables that maps a latent variable
z to a sample x with the conditional input c:

px (f(z, c)) = pz (z)

∣∣∣∣det ∂f(z, c)∂z

∣∣∣∣−1

. (1)

The conditioning input, in this case the spectrum y that corresponds to a certain device parameter vector
x, is fed through an additional conditioning network consisting of a ResNet-34 [31] to extract meaningful
features from the spectrum. More details for the hyperparameters and data preparation of the network can
be found in the supporting information.

The cVAE used for comparison is implemented similarly to Ma et al [18] and Sohn et al [32] and consists
of two simple dense networks with five hidden layers and 256 neurons each. The conditioning input is
concatenated to the input of the encoder and decoder, respectively. One network maps the device parameter
along with the simulated spectrum to the latent variable z (encoder), while the other network tries to
reconstruct the parameter vector (decoder) from the latent variable z and the simulated spectrum.

The main difference between the two networks resides in the way they are trained. The cINN is trained
with a modified maximum likelihood loss function including the Jacobian from the change of variables as
suggested by Kruse et al [42]:

L(z) =
z2

2
− log |det Jx→z| (2)

while the cVAE is trained with the evidence lower bound (ELBO) [32]:

L(z,y) =−DKL (qθ(z |xi,yi)| |p(z|y))+ Ez∼qθ(z|xi,yi) [logpϕ (xi|z,yi)] (3)

where DKL is the Kullback–Leibler divergence, which measures the difference between distributions
qθ(z|xi,yi) and p(z|y), the approximated posterior and the prior, respectively. The dependence
on y in the prior p(z|y) has been dropped to simplify training as suggested by Sohn et al [32].
Ez∼qθ(z|xi,yi) [logpϕ (xi|z,yi)] is the reconstruction loss. Under the constraint that the latent space should be
Gaussian, meaning that the term DKL (qθ(z |xi,yi)| |p(z|y)) acts as a regularization term [43, 44]. If qθ(z|xi,yi)
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is a Gaussian with mean µq and variance σq and p(z|y) a Gaussian with mean µp and variance σp, the
Kullback–Liebler divergence simplifies to its well known form [16, 44]:

−DKL (qθ(z |xi,yi)| |p(z|y)) =
1

2

[
1+ logσ2

q −σ2
q −µ2

q

]
(4)

where µq and variance σq are estimated by the encoder network [16].
The loss functions in equations (2) and (3) are very different, reflecting the different objectives to

minimize. While the goal of equation (2) is to maximize the likelihood after the change of variables,
equation (3) tries to minimize reconstruction loss while imposing the restriction of a normal distribution on
the latent space, like a regularization term [43]. Since equation (2) is a form of maximum likelihood loss
function, mode collapse is virtually impossible [29]. The objective of the ELBO is to learn a representation of
the data that is as close as possible to the true distribution which is especially useful when the data is very
high dimensional as normalizing flows typically do not scale well to high dimensional data such as images.

Even though we have access to relatively fast simulations to obtain the device response, we found it
beneficial to train a simple fully connected model consisting of three hidden layers with 512 neurons each
and ReLU activation for to predict the device response for a given parameter vector. This is not necessary but
useful to quickly visualize the behavior of the devices generated by the cINN and the cVAE.

Data availability statement

Codes to load the data and build, train and evaluate the models, as well as pretrained weights are provided
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