Short Communication

Properties of the Euler phi-function on pairs of positive integers ($6 x-1,6 x+1$)

Mbakiso Fix Mothebe* and Sebaameng Samuel
Department of Mathematics, University of Botswana, Pvt Bag 00704, Gaborone, Botswana.

Received 25 April 2016; Accepted 20 July 2016
Let $\mathrm{n} \geq 1$ be an integer. Define $\phi 2(\mathrm{n})$ to be the number of positive integers $\mathrm{x}, 1 \leq \mathrm{x} \leq \mathrm{n}$, for which both $\mathbf{6 x - 1}$ and $6 x+1$ are relatively prime to 6 n . The primary goal of this study is to show that $\phi 2$ is a multiplicative function, that is, if $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\phi 2(\mathrm{mn})=\phi 2(\mathrm{~m}) \phi 2(\mathrm{n})$.

Key words: Euler phi-function, multiplicative function.

THE EULER $\Phi 2$ FUNCTION

Let $n \geq 1$ be an integer and let $S=\{1,7,11,13,17,19$, 23, 29\}, the set of integers which are both less than and relatively prime to 30 . In Mothebe and Modise (2016) we define $\phi_{3}(n)$ to be the number of integers x, $0 \leq x \leq n-1$, for which $\operatorname{gcd}(30 n, 30 x+i)=1$ for all $i \in S$. We proved that this function is multiplicative and thereby obtained a formula for its evaluation.
For each $n \in \mathrm{~N}$ let $\phi_{2}(n)$ denote the number of positive integers $x, 1 \leq x \leq n$, for which both $6 x-1$ and $6 x+1$ are relatively prime to $6 n$. In this note we draw analogy with our study of ϕ_{3} and show that ϕ_{2} is multiplicative.
For example if $n=5 \in S$, then $\phi_{2}(n)=3$ since the pairs $(11,13),(17,19)$ and $(29,31)$ are the only ones with components that are relatively prime to 30 .
We now proceed to show that we can evaluate $\phi_{2}(n)$ from the prime factorization of n. Our arguments are based on those used by Burton (2002) to show that the Euler phi-function is multiplicative. We first note:

Theorem 1.1: Let k and s be nonnegative numbers and let $p \geq 5$ be a prime number. Then the following hold:
(i) $\phi_{2}\left(2^{k}\right)=2^{k}$.
(ii) $\phi_{2}\left(3^{s}\right)=3^{s}$.
(iii) $\phi_{2}\left(p^{k}\right)=p^{k}-2 p^{k-1}$

Proof. (i) and (ii): For all nonnegative integers k and s and x:
$\operatorname{gcd}\left(6 x-1,6 \cdot 2^{k}\right)=\operatorname{gcd}\left(6 x+1,6 \cdot 2^{k}\right)=1$
and
$\operatorname{gcd}\left(6 x-1,6 \cdot 3^{s}\right)=\operatorname{gcd}\left(6 x+1,6 \cdot 3^{s}\right)=1$.
Proof. (iii): Clearly $\operatorname{gcd}\left(6 x-1,6 p^{k}\right)=1$ if and only if p does not divide $6 x-1$ and $\operatorname{gcd}\left(6 x+1,6 p^{k}\right)=1$ if and only if p does not divide $6 x+1$. There is one integer between 1 and p that satisfies the congruence relation $6 x \equiv 1(\bmod p)$. Hence there are p^{k-1} integers between 1 and p^{k} that satisfy $6 x \equiv 1(\bmod p)$. Similarly there are p^{k-1} integers of the form $6 x+1$ between 1 and p^{k} divisible by p. Thus the set $\{(6 x-1,6 x+1) / 1 \leq x \leq$

[^0]Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
$\left.p^{k}\right\}$ contains exactly $p^{k}-2 p^{k-1}$ pairs corresponding to integers x for which both $\operatorname{gcd}\left(6 x-1,6 p^{k}\right)=1$ and $\operatorname{gcd}\left(6 x+1,6 p^{k}\right)=1$. Thus $\phi_{2}\left(p^{k}\right)=p^{k}-2 p^{k-1}$.

For example $\phi_{2}\left(5^{2}\right)=5^{2}-2.5=15$ and $\phi_{2}(5)=5-2 \cdot 5^{0}=3$ as observed earlier.
We recall that:
Definition 1.2: A number theoretic function f is said to be multiplicative if $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1$.

From the proof of Theorem 1.1 it is clear that for all integers k and $s: \phi_{2}\left(2^{k} 3^{s}\right)=\phi_{2}\left(2^{k}\right) \phi_{2}\left(3^{s}\right)$.

We now show that the function ϕ_{2} is multiplicative. This will enable us to obtain a formula for $\phi_{2}(n)$ based on a factorization of n as a product of primes. We require the following results:

Lemma 1.3: Given integers $m, n, \operatorname{gcd}(6 x-1,6 m n)=1$ if and only if $\operatorname{gcd}(6 x-1,6 m)=1$ and $\operatorname{gcd}(6 x-1,6 n)=1$.

Similarly given integers $m, n, \operatorname{gcd}(6 x+1,6 m n)=1$ if and only if $\operatorname{gcd}(6 x+1,6 m)=1$ and $\operatorname{gcd}(6 x+1,6 n)=1$. This is an immediate consequence of the following standard result.

Lemma 1.4: Given integers $m, n, k, \operatorname{gcd}(k, m n)=1$ if and only if $\operatorname{gcd}(k, m)=1$ and $\operatorname{gcd}(k, n)=1$.

We note also the following standard result.
Lemma 1.5: If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Theorem 1.6: The function ϕ_{2} is multiplicative, that is, if $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\phi_{2}(\mathrm{mn})=\phi_{2}(\mathrm{~m}) \phi_{2}(\mathrm{n})$.

Proof: The result holds if either m or n equals 1 . We shall therefore assume neither m nor n equals 1 . Arrange the integer pairs $(6 x-1,6 x+1), 1 \leq x \leq m n$, in an $n \times m$ array as follows:
$\left[\begin{array}{ccc}(5,7) & \cdots & (6 m-1,6 m+1) \\ (6(m+1)-1,6(m+1)+1) & \cdots & (6(2 m)-1,6(2 m)+1) \\ . & \cdot & . \\ \cdot & \cdot & . \\ (6((n-1) m+1)-1,6((n-1) m+1)+1) & \cdots & (6(m n)-1,6(m n)+1)\end{array}\right]$
we know that $\phi_{2}(m n)$ is equal to the number of pairs $(6 x-1,6 x+1)$ in this matrix for which both $6 x-1$ and $6 x+1$ are relatively prime to ' 6 mn '. By virtue of Lemma 1.3 this is the same as the number of pairs $(6 x-1,6 x+1)$ in the same matrix for which both $6 x-1$ and $6 x+1$ are relatively prime to each of $6 m$ and $6 n$.
We first note, by virtue of Lemma 1.5, that $\operatorname{gcd}(6(q m x)-1,6 m)=\operatorname{gcd}(6 x-1,6 m)$ and likewise
$\operatorname{gcd}(6(q m+x)+1,6 m)=\operatorname{gcd}(6 x+1,6 m)$. Therefore the pairs $(6(q m+x)-1,6(q m+x)+1)$ in the $x^{\text {th }}$ column are both relatively prime to $6 m$ if and only if both $6 x-1$ and $6 x+1$ are relatively prime to $6 m$.
Therefore only $\phi_{2}(m)$ columns contain pairs ($6 x-1$, $6 x+1$) both relatively prime to $6 m$ and every other pair in the column will constitute of integers both relatively prime to 6 m . The problem now is to show that in each of these $\phi_{2}(m)$ columns there are exactly $\phi_{2}(n)$ integer pairs $(6 x-1,6 x+1)$ that are both relatively prime to $6 n$, for then altogether there would be $\phi_{2}(m) \phi_{2}(n)$ pairs in the table that are relatively prime to both $6 m$ and $6 n$.
The entries that are in the $x^{\text {th }}$ column (where it is assumed $\operatorname{gcd}(6 x-1,6 m)=\operatorname{gcd}(6 x+1,6 m)=1)$ are: $(6 x$ $-1,6 x+1),(6(m+x)-1,6(m+x)+1), \ldots$, (6((n-1) $m+x)-1,6((n-1) m+x)+1)$.
There are n pairs in this sequence and for no two pairs: $(6(q m+x)-1,6(q m+x)+1),(6(j m+x)-1$, $6(j m+x)+1)$ in the sequence do we have:
$6(q m+x)-1 \equiv 6(j m+x)-1(\bmod n)$
and
$6(q m+x)+1 \equiv 6(j m+x)+1 \quad(\bmod n)$
since otherwise we would arrive at a contradiction $q \equiv$ $j(\bmod n)$. Thus the terms of the sequence, $x, m+x$, $2 m+x, \ldots,(n-1) m+x$ are congruent modulo n to 0 , $1,2, \ldots n-1$ in some order.
Now suppose t is congruent modulo n to $q m+x$. Then the integers, $6(q m+x)-1$ and $6(q m+x)+1$ are both relatively prime to $6 n$ if and only if both $6 t-1$ and $6 t+1$ are relatively prime to $6 n$. The implication is that the $x^{\text {th }}$ column contains as many pairs of integers that are relatively prime to $6 n$ as does the set $\{(5,7),(11,13), \ldots,(6 n-1,6 n+1)\}$, namely $\phi_{2}(n)$ pairs. Thus the number of pairs of integers $(6 x-1,6 x+1)$ in the matrix that are relatively prime to $6 m$ and $6 n$ is $\phi_{2}(m) \phi_{2}(n)$. This completes the proof of the theorem.
The following result immediately follows from Theorem 1.1 and Theorem 1.6:

Corollary 1.7: If the integer $n>1$ has the prime factorization $\mathrm{n}=2^{k 1} 3^{k 2} \mathrm{p}^{k 3}{ }_{3} \ldots . \mathrm{p}^{\mathrm{kr}}{ }_{r}$
then $\phi_{2}(n)=2^{k 1} 3^{k 2}\left(p^{k 3}{ }_{3}-2 p^{k 3}{ }_{3}{ }_{3}\right) \ldots\left(p_{r}^{k r}-2 p^{k r-1}{ }_{r}\right)$.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

Burton DM (2002). Elementary Number Theory. McGraw-Hill, International Editions.

Mothebe MF, Modise BT (2016). An extension of the Euler Phi-function to Sets of Integers Relatively Prime to 30. J. Math. Res. 8(2):45-48. http://dx.doi.org/10.5539/jmr.v8n2p45.

[^0]: *Corresponding author. E-mail: mothebemf@mopipi.ub.bw.

