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Abstract
We study the higher-order nonlinear Schrödinger equation which takes care of the second as
well as third order dispersion effects, cubic and quintic self phase modulations, self steepening
and nonlinear dispersion effects. Taking advantage of the initial condition, we transform the
previous equation into a nonlinear functional equation to which we apply a powerful analytical
method called the Adomian decomposition method. We compute the Adomian’s polynomials of
corresponding infinite series solution. Assuming that the initial condition and all its derivatives
converge to zero sufficiently rapidly as the time approaches to infinity, we established the
convergence of the previous series. The last part of the paper describes applications resulting
from nonlinear propagation phenomena in optical fibers. Numerical simulations are developed and
it is further shown that comparison with other results yields a good qualitative agreement. These
results demonstrate the robustness of the proposed method.
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1 INTRODUCTION

For describing the dynamics of light pulses
in optical fibers, one uses the mathematical
model namely the nonlinear Schrödinger (
NLS ) equation [1]. In [2], the NLS eqaution
is formulated as a variational problem and
comparison with scattering theory showed
agreement. For picosecond light pulses, the
NLS equation includes only the group velocity
dispersion and the self-phase modulation,
well known in fibers [3]. However, as one
increases the intensity of the incident light
power to produce shorter (femtosecond) pulses,
additional nonlinear effects become important
and the dynamics of pulses needs to be
described in the frame of a generalized nonlinear
Schrödinger equation (GNLSE) that includes
higher-order nonlinear terms [4], [5]. Propagation
of femtosecond pulse in fiber links can be
described by the GNLSE which takes care of the
second as well as third order dispersion effects,
cubic and quintic self phase modulations, self
steepening and nonlinear dispersion effects and
can be written as [6] and [7] :

ψz + a1ψ + a2ψtt + a3|ψ|2ψ + a4ψttt

+a5(|ψ|2ψ)t + a6(|ψ|4ψ)t + a7|ψ|4ψ0, (1.1)

where ψ is a complex valued function of
the normalized spatial coordinate z ( distance
of transmission through the fiber ) and the
normalized time t ( ψ the slowly varying envelope
of the electric field ), aj , j = 1, . . . , 7 are complex
parameters and the subscripts t and z denote
the differentiation with respect to time and space,
respectively ; ψtt represents the normalized
group velocity dispersion, with the next cubic term
describing self phase modulations due to the
Kerr effect. The term involving a4 represents the
third order dispersion, while the term involving
a5 is the self steepening effect. The sixth and
seventh terms in the left hand side respectively
describe the nonlinear dispersion and self phase
modulation effects due to quintic nonlinearity. The
original input optical pulse is defined as

ψ(z, t)|z=0 = g(t), (1.2)

where g is a given complex valued function of the
time t.

The GNLSE has become a standard tool for
simulating the propagation of strong light pulses
in optical fibers [8], [9], [10]. For example, in
order to describe the optical pulse propagation
in a nonlinear dispersion medium, one derived
this previous equation from Maxwell’s equations
under the slowly varying envelope approximation
[11]. For this equation, both the analytical and
the numerical solutions have been subject to
intensive investigations. It is a well known
fact that a few exact solutions of the GNLSE
are known even now. This has been largely
due to the complexity of the partial differential
equation. The construction of an exact solution
for the nonlinear evolution equation is an
important topic in the study of nonlinear
physical phenomena because exact solutions
can help one to well understand the mechanism
of the complicated physical phenomena and
dynamical processes modeled by nonlinear
evolution equations. Various methods have been
employed for the analytical study, the Lagrangian
variational method being the most common of
them. In this method, the Lagrangian density
of the system is constructed and a suitable
trial function for the pulse is assumed. In a
series of remarkable papers [6], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22]
the authors have studied this equation using
various approaches. These methods can be
classified into two broad categories known as
the finite-difference methods and the pseudo
spectral methods [11]. Nowadays the method
that has been used extensively is the split-step
Fourier method which has a faster calculation
speed than the other finite-difference methods.
So it is very important to develop efficient
methods to solve this equation. One of the
methods is the Adomian decomposition method
for solving a wide range of physical problems
[23], [24]. Several modifications were improved
its ability in [25] , [26], [24], [27], [28],
[29], [30], [31], [7], [32]. An advantage of
this method is that it can provide analytical
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approximation or an approximated solution to
a wide class of nonlinear equations without
linearization, perturbation, closure approximation
or discretization methods [33]. A recent work has
been done by Biswas et al. [34] on optical solitons
by using the Laplace-Adomian decomposition
method. As a result numerical dispersive bright
and dark optical solitons have been displayed

and the precision obtained is excellent. The
paper is organized as follows. In section 2,
we solve the generalized nonlinear Schrödinger
equation and prove the convergence of the
solutions. In section 3, numerical investigation of
the obtained analytical solutions is given. A brief
conclusion is incorporated en section 4.

2 ANALYTICAL SOLUTION

In this section, we provide the analytical solution to the problem ( 1.1) and (1.2 ).
Taking account of the initial condition (1.2) and integrating the equation (1.1) from 0 to z, we have

ψ −N(ψ) = g(t) (2.1)

where

N(ψ) =

∫ z

0

L
[
ψ(ξ, t), ψ?(ξ, t), ψt(ξ, t), ψ

?
t (ξ, t), ψtt(ξ, t), ψttt(ξ, t)

]
dξ;

L
(
ψ,ψ?, ψt, ψ

?
t , ψtt, ψttt

)
= −a1ψ − a2ψtt − a3ψ2ψ? − a4ψttt − a5

(
2ψψtψ

? + ψ2ψ?t
)

−a6
(
3ψ2ψtψ

?2 + 2ψ3ψ?tψ
?)− a7ψ3ψ?2.

Here N is a nonlinear operator from a Hilbert space H into H.
In [23]-[24], Adomian decomposition method for solving linear and nonlinear equations was developed.
In [27], [26] it was shown that the Adomian decomposition method provides a fast convergent series.
We assume that (2.1) has a unique solution . Let us write the solution of (2.1) as an infinite series as
follows

ψ =
∑
n≥0

ψn (2.2)

using the following scheme :

ψ0 = g(t);

ψn+1 = An(ψ0, ψ2, . . . , ψn), n = 0, 1, 2, 3, . . . ,

where An(ψ0, ψ1, . . . , ψn) are polynomials of ψ0, ψ1, . . . , ψn defined by

An =
1

n!

[
dn

dλn
N

(∑
i≥0

λiψi

)]
λ=0

, n = 0, 1, 2, 3, . . .

It comes that

An =
1

n!

∫ z

0

[
dn

dλn
L

(∑
i≥0

λiψi,
∑
i≥0

λiψ?i ,
∑
i≥0

λiψit,
∑
i≥0

λiψ?it,
∑
i≥0

λiψitt,
∑
i≥0

λiψittt

)]
λ=0

dξ

Let us determine these polynomials. See Appendix for more details. We have

ψ0 = g(t); (2.3)

ψ1 = zh1(t); (2.4)

ψ2 =
1

1!
z2h2(t); (2.5)

ψ3 =
1

2!
z3h3(t) (2.6)
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and by induction

ψn =
znhn(t)

(n− 1)!
, n ≥ 1. (2.7)

Therefore, the function ψ defined by

ψ(z, t) = g(t) +
∑
n≥1

znhn(t)

(n− 1)!
(2.8)

is the exact solution of the previous equation satisfying the condition

ψ(z, t)|z=0 = g(t)

where hi are functions depending on g, g? and their derivatives, given by

h1(t) = −a1g(t)− a2g′′(t)− a3|g(t)|2g(t)− a4g′′′(t)− a5
[
2|g(t)|2g′(t)

+g2(t)g?′(t)
]
− a6

[
3g′(t)|g(t)|4 + 2g2(t)|g(t)|2g?′(t)

]
− a7|g(t)|4g(t); (2.9)

h2(t) =
1

2

{
h1(t)

[
− a1 − 2a3|g(t)|2 − 2a5

(
g′(t)g?(t) + g(t)g?′(t)

)
−6a6

(
|g(t)|2g′(t)g?(t) + g(t)|g(t)|2g?′(t)

)
− 3a7|g(t)|4

]
+h?1(t)

[
− a3g2(t)− 2a5g(t)g

′(t)− a6
(
6|g(t)|2g(t)g′(t)

+2g3(t)g?′(t)
)
− 2a7g

2(t)|g(t)|2
]
+ h′1(t)

[
− 2a5|g(t)|2 − 3a6|g(t)|4

]
+h?′1 (t)

[
− a5g2(t)− 2a6g

2(t)|g(t)|2
]
− a2h′′1 (t)− a4h′′′1 (t)

}
; (2.10)

h3(t) =
1

3

{
h2
1(t)

[
− 2a3g

?(t)− 2a5g
?′(t)− 6a6

(
g′(t)g?2(t) + 2|g(t)|2g?′(t)

)
−6a7g(t)g?2(t)

]
+ h?21

[
− 6a6g

2(t)g′(t)− 2a7g
3(t)

]
+2h1(t)h

?
1(t)

[
− 2a3g(t)− 2a5g

′(t)− 6a6
(
2|g(t)|2g′(t) + g2(t)g?′(t)

)
−6a7g(t)|g(t)|2

]
+ 2h1(t)h

′
1(t)

(
− 2a5g

?(t)− 6a6|g(t)|2g?(t)
)

+2h1(t)h
?′
1 (t)

[
− 2a5g(t)− 6a6g(t)|g(t)|2

]
+ 2h?1(t)h

′
1(t)

[
− 2a5g(t)

−6a6g(t)|g(t)|2
]
− 4a6g

3(t)h?1(t)h
?′
1 (t) + 2h2(t)

[
− a1 − 2a3|g(t)|2

−2a5
(
g′(t)g?(t)

)
+ g(t)g?′(t)− 6a6

(
|g(t)|2g′(t)g?(t) + |g(t)|2g(t)g?′(t)

)
−3a7|g(t)|4

]
+ 2h?2(t)

[
− a3g2(t)− 2a5g(t)g

′(t)− a6
(
6|g(t)|2g(t)g′(t)

+2g3(t)g?′(t)
)
− 2a7|g(t)|2g2(t)

]
+ 2h′2(t)

[
− 2a5|g(t)|2 − 3a6|g(t)|4

]
+2h?′2 (t)

[
− a5g2(t)− 2a6|g(t)|2g2(t)

]
− 2a2h

′′
2 (t)− 2a4h

′′′
2 (t)

}
. (2.11)

Finally we arrive at the following result Assume that the functions g, hn satisfy the conditions{
g(t) −→ 0 as |t| −→ +∞

supt∈R |hn(t)| ≤ cn, ∀ n ≥ 1
(2.12)

and the positive numerical series ∑
n≥1

cn (2.13)
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converges.
Then the functional series ∑

n≥1

znhn(t)

(n− 1)!
(2.14)

converges uniformly on the set [0,+∞[×R. Indeed,

sup
t∈R

∣∣∣∣∣∑
n≥1

znhn(t)

(n− 1)!

∣∣∣∣∣ ≤∑
n≥1

zn

(n− 1)!
sup
t∈R
|hn(t)|.

By virtue of the conditions (2.12) and (2.13),

sup
t∈R

∣∣∣∣∣∑
n≥1

znhn(t)

(n− 1)!

∣∣∣∣∣ ≤∑
n≥1

cnz
n

(n− 1)!

By means of d’Alembert’s test, the series∑
n≥1

cnz
n

(n− 1)!

converges. Therefore, ∑
n≥1

znhn(t)

(n− 1)!

converges uniformly on the set [0,+∞[×R. �

3 NUMERICAL APPROACH
AND RESULTS

The purpose of this part is to provide
numerical results for comparison with other
results obtained using other methods of
calculations both analytically and numerically.
During the numerical calculation, different input
sources with different duration, and different
choices of parameters are used. As it is well
known, the dispersion and nonlinear lengths
characterize the pulse propagation in a given
fiber. Physically, the dispersion length LD is
length at which a Gaussian pulse broadens by
a factor of 2 due to group velocity dispersion. The
dispersion length depends strongly on the half-
width of the source slowly varying pulse envelope
and the second order dispersion term and LN the
nonlinear length given by :

LD =
T 2
0

β2
, LN =

1

γP0
; (3.1)

where P0 is the peak power and γ is the nonlinear
Kerr effect coefficient.

Some specific advantages of the results :
The solutions contain both the parameters of the
medium and the pulse ;
The solutions provide infinite series
approximation in an analytic form ;
The implementation is easy and the convergence
of the solutions is very fast.

3.1 Case of Picosecond Pulses
We use the following parameters and

compare our results with those in [7] where
rapid numerical difference recurrent formula of
nonlinear Schrödinger equation is used. i.e T0 =
20ps, β2 = −4ps2/km, β3 = 0ps3/km, the fiber
loss is equal to zero as well as the nonlinear Kerr
effect parameter. The propagation distances are
respectively : z = 0km, z = 10km, and z =
16km. The results presented in Fig. 1 and Fig.
2 provide the same Gaussian profiles as those
presented in figure 1 in [7]. It is clearly observed
that when the propagation distance increases the
peak power decreases and the wave spreads
while keeping its constant energy. This result
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is expected and confirms the predictions. But
unfortunately, what is not expected and constitute
a limitation of our approach is that the distance
propagation must remain small compared to
the distance LD. The validity of our method
requires to restrict the propagation distance to
the interval [0, LD]. On the other side, the
comparison is simply analytical and does not
strictly take into account the numerical values
of the output energy. In fact the initial idea was
to compare numerical values of the energy but
we arrived at results such that the propagation
distances that are input parameters are not the
same. We can conclude that the optical pulse
propagation in optical medium can be obtained
by Adomian decomposition method provided
that the propagation distance is less than the
dispersion length.

From Fig. 1 and Fig. 2 we can conclude that
the shape of the pulse for a given propagation
distance z depends on the input optical pulse.
And as we have observed in Fig. 1, the peak

power of the pulse at the input is high and as the
pulse propagates in the fiber, the peak decreases
and it spreads. We also restrict ourselves in the
propagation interval to [0, LD].

3.2 Case of Femtosecond Pulses

We consider that the input optical pulse
is hyperbolic secant, the dispersive parameters
used are the same as those in [20] : β2 =
−1ps2/km, β3 = 0.0012ps3/km.
In Fig. 3 it can be observed that the pulse
is shifted to the positive time axis during its
propagation. In the numerical simulations, it
is observed that the third order dispersion
parameter and the self steepening parameter
influence strongly the shape of the pulse during
propagation. In Fig. 4 the influence of the
fiber loss parameter a1 is shown. The optical
pulse energy dropped significantly. The arbitrary
parameters used in Fig. 4 are : a2 = −i/2,
a3 = −i, a4 = 0.02, a5 = 0.8, a6 = 0.1, a7 = 0.5.

FIGURE 1 – Adomian analytical solutions plots for distance propagation z=0 km, z=10 km and z=16
km respectively. The input optical pulse is Gaussian without chirp and loss.

6



Adanhounme et al. ; AIR, 18(4) : 1-11, 2019 ; Article no.AIR.47399

FIGURE 2 – Adomian analytical solutions plots for distance propagation z=0 km, z=10 km and z=16
km respectively. The input optical pulse is hyperbolic secant without chirp and loss.

FIGURE 3 – Adomian analytical solutions plots for distance propagation z = 10−5km. The input
optical pulse is hyperbolic secant.
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FIGURE 4 – Adomian analytical solutions plots for distance propagation z = 10−5km. The input
optical pulse is hyperbolic secant ; β2 = −1ps2/km, β3 = 0.0012; a1 = 0; a1 = 2

.

4 CONCLUDING REMARKS

In this paper, we have investigated the
analytical solutions for the generalized nonlinear
Schrödinger equation using the Adomian
decomposition method. For the optical input
pulse converging to zero sufficiently rapidly
as the time approaches to infinity and for the
bounded functions depending on the optical
input pulse and its derivatives, we proved that
the obtained solutions series of Adomian’s
polynomials converges uniformly on a given
set. In order to validate the availability of
our approach, we simulate numerically these
obtained solutions by studying propagation of
optical pulses inside a nonlinear dispersive
medium. The picosecond and femtosecond
optical input pulses with Gaussian and hyperbolic
secant profiles are used. Thus the results showed
an acceptable physical behavior of the solutions
when the propagation distance is less than the
dispersive length. We can conclude that Adomian
decomposition method is an useful and important
tool for scrutinizing the inside of an optical fiber

provided that the propagation distance is less
than the dispersive length.
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APPENDIX
In this appendix we list the first and second order derivatives of L with respect to ψ,ψ?,

ψt, ψ?t , ψtt, ψttt defining the expressions of
dL

dλ
and

d2L

dλ2
:

dL

dλ
=

∂L

∂ψ

dψ

dλ
+

∂L

∂ψ?
dψ?

dλ
+

∂L

∂ψt

dψt

dλ
+

∂L

∂ψ?t

dψ?t
dλ

+
∂L

∂ψtt

dψtt

dλ
+

∂L

∂ψttt

dψttt

dλ

d2L

dλ2
=

∂2L

∂ψ2

(dψ
dλ

)2
+

∂2L

∂ψ?2

(dψ?
dλ

)2

+2
∂2L

∂ψ∂ψ?
dψ

dλ

dψ?

dλ
+ 2

∂2L

∂ψ∂ψt

dψ

dλ

dψt

dλ
+ 2

∂2L

∂ψ∂ψ?t

dψ

dλ

dψ?t
dλ

+2
∂2L

∂ψ?∂ψt

dψ?

dλ

dψt

dλ
+ 2

∂2L

∂ψ?∂ψ?t

dψ?

dλ

dψ?t
dλ

+
∂L

∂ψ

d2ψ

dλ2

+
∂L

∂ψ?
d2ψ?

dλ2
+

∂L

∂ψt

d2ψt

dλ2
+

∂L

∂ψ?t

d2ψ?t
dλ2

+
∂L

∂ψtt

d2ψtt

dλ2
+

∂L

∂ψttt

d2ψttt

dλ2

with
∂L

∂ψ
= −a1 − 2a3ψψ

? − 2a5
(
ψtψ

? + ψψ?t
)
− 6a6

(
ψψtψ

?2 + ψ2ψ?t ψ
?
)
− 3a7ψ

2ψ?2,

∂L

∂ψ?
= −a3ψ2 − 2a5ψψt − a6

(
6ψ2ψtψ

? + 2ψ3ψ?t
)
− 2a7ψ

3ψ?,

∂L

∂ψt
= −2a5ψψ

? − 3a6ψ
2ψ?2;

∂L

∂ψ?t
= −a5ψ2 − 2a6ψ

3ψ?,

∂L

∂ψtt
= −a2;

∂L

∂ψttt
= −a4.

∂2L

∂ψ2
t

= 0;
∂2L

∂ψ?2t
= 0;

∂2L

∂ψ2
tt

= 0;
∂2L

∂ψ2
ttt

= 0;

∂2L

∂ψ∂ψtt
= 0;

∂2L

∂ψ∂ψttt
= 0;

∂2L

∂ψ?∂ψtt
= 0;

∂2L

∂ψ?∂ψttt
= 0;

∂2L

∂ψt∂ψ?t
= 0;

∂2L

∂ψt∂ψtt
= 0;

∂2L

∂ψt∂ψttt
= 0;

∂2L

∂ψ?t ∂ψtt
= 0;

∂2L

∂ψ?t ∂ψttt
= 0;

∂2L

∂ψtt∂ψttt
= 0.

∂2L

∂ψ2
= −2a3ψ

? − 2a5ψ
?
t − 6a6

(
ψtψ

?2 + 2ψψ?t ψ
?
)
− 6a7ψψ

?2;

∂2L

∂ψ?2
= −6a6ψ

2ψt − 2a7ψ
3;

∂2L

∂ψ∂ψt
= −2a5ψ

? − 6a6ψψ
?2;

∂2L

∂ψ∂ψ?
= −2a3ψ − 2a5ψt − 6a6

(
2ψψtψ

? + ψ2ψ?t

)
− 6a7ψ

2ψ?;

∂2L

∂ψ∂ψ?t
= −2a5ψ − 6a6ψ

2ψ?;
∂2L

∂ψ?∂ψt
= −2a5ψ − 6a6ψ

2ψ?;
∂2L

∂ψ?∂ψ?t
= −2a6ψ

3.
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